6 resultados para Béton durable

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced metastatic melanoma is incurable by standard treatments, but occasionally responds to immunotherapy. Recent trials using dendritic cells (DC) as a cellular adjuvant have concentrated on defined peptides as the source of antigens, and rely on foreign proteins as a source of help to generate a cell-mediated immune response. This approach limits patient accrual, because currently defined, non-mutated epitopes are restricted by a small number of human leucocyte antigens. It also fails to take advantage of mutated epitopes peculiar to the patient's own tumour, and of CD4(+) T lymphocytes as potential effectors of anti-tumour immunity. We therefore sought to determine whether a fully autologous DC vaccine is feasible, and of therapeutic benefit. Patients with American Joint Cancer Committee stage IV melanoma were treated with a fully autologous immunotherapy consisting of monocyte-derived DC, matured after culture with irradiated tumour cells. Of 19 patients enrolled into the trial, sufficient tumour was available to make treatments for 17. Of these, 12 received a complete priming phase of six cycles of either 0.9X10(6) or 5X10(6) DC/intradermal injection, at 2-weekly intervals. Where possible, treatment continued with the lower dose at 6-weekly intervals. The remaining five patients could not complete priming, due to progressive disease. Three of the 12 patients who completed priming have durable complete responses (average duration 3 5 months +), three had partial responses, and the remaining six had progressive disease (WHO criteria). Disease regression was not correlated with dose or with the development of delayed type hypersensitivity responses to intradermal challenge with irradiated, autologous tumour. However, plasma S-100B levels prior to the commencement of treatment correlated with objective clinical response (P = 0.05) and survival (log rank P < 0.001). The treatment had minimal side-effects and was well tolerated by all patients. Mature, monocyte-derived DC preparations exposed to appropriate tumour antigen sources can be reliably produced for patients with advanced metastatic melanoma, and in a subset of those patients with lower volume disease their repeated administration results in durable complete responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence diversity in the coat protein coding region of Australian strains of Johnsongrass mosaic virus (JGMV) was investigated. Field isolates were sampled during a seven year period from Johnsongrass, sorghum and corn across the northern grain growing region. The 23 isolates were found to have greater than 94% nucleotide and amino acid sequence identity. The Australian isolates and two strains from the U.S.A. had about 90% nucleotide sequence identity and were between 19 and 30% different in the N-terminus of the coat protein. Two amino acid residues were found in the core region of the coat protein in isolates obtained from sorghum having the Krish gene for JGMV resistance that differed from those found in isolates from other hosts which did not have this single dominant resistance gene. These amino acid changes may have been responsible for overcoming the resistance conferred by the Krish gene for JGMV resistance in sorghum. The identification of these variable regions was essential for the development of durable pathogen-derived resistance to JGMV in sorghum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.