109 resultados para Axis patterning

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, excess all-trans retinoic acid (RA) applied during axis formation leads to the apparent truncation of anterior structures. In this study we sought to determine the type of defects caused by ectopic RA on the development of the ascidian Herdmania curvata. We demonstrate that H. curvata embryos cultured in the presence of RA develop into larvae whose trunks are shortened and superficially resemble those of early metamorphosing postlarvae. Despite RA-treated larvae lacking papillar structures they respond normally to natural cues that induce metamorphosis, indicating that chemosensory functionality previously mapped to the most anterior region of normal larvae is unaffected by RA. Excess RA applied during postlarval development leads to a graded loss of the juvenile pharynx, apparently by respecifying anterior endoderm to a more posterior fate. This structure is considered homologous to the gill slits of amphioxus. which are also lost upon RA treatment. This suggests that RA may have had a role in the development of the pharynx of the ancestral chordate and that this function has been maintained in ascidians and cephalochordates and lost in vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1 beta (IL-1 beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1 beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1 beta (1 mug/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1 beta -induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1 beta -activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1 beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1 beta -induced HPA axis responses. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The past 15 years has seen the emergence of a new field of neuroscience research based primarily on how the immune system and the central nervous system can interact. A notable example of this interaction occurs when peripheral inflammation, infection or tissue injury activates the hypothalamic- pituitary-adrenal axis (HPA). 2. During such assaults, immune cells release the pro- inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha into the general circulation. 3. These cytokines are believed to act as mediators for HPA axis activation. However, physical limitations of cytokines impede their movement across the blood-brain barrier and, consequently, it has been unclear as to precisely how and where IL-1beta signals cross into the brain to trigger HPA axis activation. 4. Evidence from recent anatomical and functional studies suggests two neuronal networks may be involved in triggering HPA axis activity in response to circulating cytokines. These are catecholamine cells of the medulla oblongata and the circumventricular organs (CVO). 5. The present paper examines the role of CVO in generating HPA axis responses to pro-inflammatory cytokines and culminates with a proposed model based on cytokine signalling primarily involving the area postrema and catecholamine cells in the ventrolateral and dorsal medulla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echocardiographic analysis of regional left ventricular function is based upon the assessment of radial motion. Long-axis motion is an important contributor to overall function. but has been difficult to evaluate clinically until the recent development of tissue Doppler techniques. We sought to compare the standard visual assessment of radial motion with quantitative tissue Doppler measurement of peak systolic velocity. timing and strain rate (SRI) in 104 patients with known or suspected coronary artery disease undergoing dobutamine stress echocardiography (DbE). A standard DbE protocol was used with colour tissue Doppler images acquired in digital cine-loop format. peak systolic velocity (PSV), time to peak velocity (TPV) and SRI were assessed off-line by an independent operator. Wall motion was assessed by an experienced reader. Mean PSV, TPV and SRI values were compared with wall motion and the presence of coronary artery disease by angiography. A further analysis included assessing the extent of jeopardized myocardium by comparing average values of PSV, TPV and SRI against the previously validated angiographic score. Segments identified as having normal and abnormal radial wall motion showed significant differences in mean PSV (7.9 +/- 3.8 and 5.9 +/- 3.3 cm/s respectively; P < 0.001), TPV (84 40 and 95 +/- 48 ms respectively; P = 0.005) and SRI (- 1.45 +/- 0.5 and - 1.1 +/- 0.9 s(-1) respectively; P < 0.001). The presence of a stenosed subtending coronary artery was also associated with significant differences from normally perfused segments for mean PSV (8.1 3.4 compared with 5.7 +/- 3.7 cm/s; P < 0.001), TPV (78 50 compared with 92 +/- 45 ms; P < 0.001) and SRI (- 1.35 0.5 compared with - 1.20 +/- 0.4 s(-1); P = 0.05). PSV, TPV and SRI also varied significantly according to the extent of jeopardized myocardium within a vascular territory. These results suggest that peak systolic velocity, timing of contraction and SRI reflect the underlying physiological characteristics of the regional myocardium during DbE, and may potentially allow objective analysis of wall motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains, (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyphase evolution of the Serido Belt (NE-Brazil) includes D, crust formation at 2.3-2.1 Ga, D-2 thrust tectonics at 1.9 Ga and crustal reworking by D-3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D-2 and D-3 events were used to constrain the tectono-thermal evolution of the belt. D-2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600-650 degreesC) through grain boundary migration, subgrain rotation and operation of quartz Q-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from (c)-prism to positive and negative (a)-rhombs. During D-3, enhancement of ductility by dissipation of heat that came from syn-D-3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D-3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from (a)-prism to a basal slip indicates a thermal path from 600 to 350 degreesC. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Serido Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities of calcium and vitamin D metabolism in cystic fibrosis (CF) are well documented. We tested the hypothesis that alterations in calcium metabolism are related to vitamin D deficiency, and that bone resorption is increased relative to accretion in patients with CF. Calcitropic hormones, electrolytes, osteocalcin (OC) and bone alkaline phosphatase (BAP), (markers of bone mineralisation), urinary deoxypyridinoline [total (t) Dpd, a marker of bone resorption] and lumbar spine bone mineral density (LS BMD), expressed as a z-score, were measured in 149 (81 M) CF and 141 (61 M) control children aged 5.3-10.99 years, adolescents aged 11-17.99 years and adults aged 18-55.9 years. Data were analysed by multiple regression to adjust for age. In patients, FEV1% predicted and CRP (as disease severity markers), genotype and pancreatic status (PS) were recorded. The distribution of PTH differed between groups (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.