3 resultados para Automatic theorem proving

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide an axiomatisation of the Timed Interval Calculus, a set-theoretic notation for expressing properties of time intervals. We implement the axiomatisation in the Ergo theorem prover in order to allow the machine-checked proof of laws for reasoning about predicates expressed using interval operators. These laws can be then used in the machine-assisted verification of real-time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite decades of research, the takeup of formal methods for developing provably correct software in industry remains slow. One reason for this is the high cost of proof construction, an activity that, due to the complexity of the required proofs, is typically carried out using interactive theorem provers. In this paper we propose an agent-oriented architecture for interactive theorem proving with the aim of reducing the user interactions (and thus the cost) of constructing software verification proofs. We describe a prototype implementation of our architecture and discuss its application to a small, but non-trivial case study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An inherent incomputability in the specification of a functional language extension that combines assertions with dynamic type checking is isolated in an explicit derivation from mathematical specifications. The combination of types and assertions (into "dynamic assertion-types" - DATs) is a significant issue since, because the two are congruent means for program correctness, benefit arises from their better integration in contrast to the harm resulting from their unnecessary separation. However, projecting the "set membership" view of assertion-checking into dynamic types results in some incomputable combinations. Refinement of the specification of DAT checking into an implementation by rigorous application of mathematical identities becomes feasible through the addition of a "best-approximate" pseudo-equality that isolates the incomputable component of the specification. This formal treatment leads to an improved, more maintainable outcome with further development potential.