24 resultados para Automated Cryptanalysis
em University of Queensland eSpace - Australia
Resumo:
Manual curation has long been held to be the gold standard for functional annotation of DNA sequence. Our experience with the annotation of more than 20,000 full-length cDNA sequences revealed problems with this approach, including inaccurate and inconsistent assignment of gene names, as well as many good assignments that were difficult to reproduce using only computational methods. For the FANTOM2 annotation of more than 60,000 cDNA clones, we developed a number of methods and tools to circumvent some of these problems, including an automated annotation pipeline that provides high-quality preliminary annotation for each sequence by introducing an uninformative filter that eliminates uninformative annotations, controlled vocabularies to accurately reflect both the functional assignments and the evidence supporting them, and a highly refined, Web-based manual annotation tool that allows users to view a wide array of sequence analyses and to assign gene names and putative functions using a consistent nomenclature. The ultimate utility of our approach is reflected in the low rate of reassignment of automated assignments by manual curation. Based on these results, we propose a new standard for large-scale annotation, in which the initial automated annotations are manually investigated and then computational methods are iteratively modified and improved based on the results of manual curation.
Resumo:
In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Good quality concept lattice drawings are required to effectively communicate logical structure in Formal Concept Analysis. Data analysis frameworks such as the Toscana System use manually arranged concept lattices to avoid the problem of automatically producing high quality lattices. This limits Toscana systems to a finite number of concept lattices that have been prepared a priori. To extend the use of formal concept analysis, automated techniques are required that can produce high quality concept lattice drawings on demand. This paper proposes and evaluates an adaption of layer diagrams to improve automated lattice drawing. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
Background: Automated measurement of LV function could extend the clinical utility of echo by less expert readers. We sought to define normal ranges of global 2D strain (2DS) and strain-rate (SR) in an international, multicenter study of healthy subjects, and to assess the determinants of variation. Methods: SR and 2DS were measured in 18 myocardial segts in both apical and short axis views of 227 normal subjects (38% men, 48±14y) with no cardiac history, risk factors or drug therapy. The association of age and resting hemodynamics with global strain indices was sought using multiple regression. Differences in variance were expressed as F values. Results: Baseline SBP was 127±18 mmHg, pulse was 76±13/min and ejection fraction 50±20%. Although global longitudinal strain was influenced by endsystolic volume (F=4.2, p
Resumo:
Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.