15 resultados para Australian aborigines
em University of Queensland eSpace - Australia
Resumo:
Aborigines in remote areas of Australia have much higher rates of renal disease, as well as hypertension and cardiovascular disease, than non-Aboriginal Australians. We compared kidney findings in Aboriginal and non-Aboriginal people in one remote region. Glomerular number and mean glomerular volume were estimated with the disector/fractionator combination in the right kidney of 19 Aborigines and 24 non-Aboriginal people undergoing forensic autopsy for sudden or unexpected death in the Top End of the Northern Territory. Aborigines had 30% fewer glomeruli than non-Aborigines-202000 fewer glomeruli per kidney, or an estimated 404000 fewer per person (P=0.036). Their mean glomerular volume was 27% larger (P=0.016). Glomerular number was significantly correlated with adult height, inferring a relationship with birthweight, which, on average, is much lower in Aboriginal than non-Aboriginal people. Aboriginal people with a history of hypertension had 30% fewer glomeruli than those without-250000 fewer per kidney (P=0.03), or 500000 fewer per person, and their mean glomerular volume was about 25% larger. The lower nephron number in Aboriginal people is compatible with their susceptibility to renal failure. The additional nephron deficit associated with hypertension is compatible with other reports. Lower nephron numbers are probably due in part to reduced nephron endowment, which is related to a suboptimal intrauterine environment. Compensatory glomerular hypertrophy in people with fewer nephrons, while minimizing loss of total filtering surface area, might be exacerbating nephron loss. Optimization of fetal growth should ultimately reduce the florid epidemic of renal disease, hypertension, and cardiovascular disease.
Resumo:
Australian Aborigines are experiencing an epidemic of renal and cardiovascular disease. In late 1995 we introduced a treatment program into the Tiwi community, which has a three- to fivefold increase in death rates and a recent annual incidence of treated ESRD of 2760 per million. Eligible for treatment were people with hypertension, diabetics with micro or overt albuminuria, and all people with overt albuminuria. Treatment centered around use of perindopril (Coversyl, Servier), with other agents added to reach BP goals; attempts to control glucose and lipid levels; and health education. Thirty percent of the adult population, or 267 people, were enrolled, with a mean follow up of 3.39 yr. Clinical parameters were followed every 6 mo, and rates of terminal endpoints were compared with those of 327 historical controls matched for baseline disease severity, followed in the pretreatment program era. There was a dramatic reduction in BP in the treatment group, which was sustained through 3 yr of treatment. Albuminuria and GFR stabilized or improved. Rates of natural deaths were reduced by an estimated 50% (P = 0.012); renal deaths were reduced by 57% (P = 0.038); and nonrenal deaths by 46% (P = 0.085). Survival benefit was suggested at all levels of overt albuminuria, and regardless of diabetes status, baseline BP, or prior administration of angiotensin converting enzyme inhibitors (ACEI). No significant benefit was apparent among people without overt albuminuria, nor among those with GFR less than 60 ml/min. An estimated 13 renal deaths and 10 nonrenal deaths were prevented, with the number-needed-to-treat to avoid one terminal event of only 11.6. Falling deaths and renal failure in the whole community support these estimates. The program was extremely cost-effective. Programs like this should be introduced to all high-risk communities as a matter of urgency.
Resumo:
Background. Australian Aborigines living in remote areas have exceedingly high rates of renal failure together with increased cardiovascular morbidity and mortality. To examine the basis of this association, we studied markers of renal function and cardiovascular (CV) risk in a coastal Aboriginal community in a remote area of the Northern Territory of Australia. End-stage renal disease (ESRD) incidence rates in that community are 15 times the national non-Aboriginal rate and CV mortality rates in the region are increased 5-fold. Methods. A cross-sectional community survey was conducted. Markers of early renal disease examined included urine albumin/creatinine ratio (ACR), serum creatinine concentration and calculated glomerular filtration rate (GFR). CV risk markers included blood pressure as well as measures of glycaemia, diabetes and serum lipids. Results. The study group included 237 people, 58% of the adult population of the community. The crude prevalence of microalbuminuria (urine ACR: 3.4-33.9 g/mol, 30-299 mg/g) was 31% and of overt albuminuria (urine ACR: greater than or equal to34 g/mol, greater than or equal to300 mg/g), 13%. The prevalence of overt albuminuria increased with age, but the prevalence of microalbuminuria was greatest in the 45-54 year age group. Microalbuminuria was associated with increasing body mass index, whereas overt albuminuria was associated with increasing glycated haemoglobin (HbA1c) and systolic blood pressure and a history of diabetes. The prevalence of elevated serum creatinine concentration (greater than or equal to120 mumol/l) was 10%. GFR (calculated using the MDRD equation) was <60 ml/min/1.73m(2) in 12% and 60-79 ml/min/1.73 m(2) in a further 36% of the study population. Although many people with albuminuria had well preserved GFRs, mean GFR was lower in people with higher levels of albuminuria. Conclusions. The high prevalence of markers of renal disease in this community was consistent with their high rates of ESRD. The distribution of microalbuminuria suggested a 'cohort effect', representing a group who will progress to overt albuminuria. The powerful association of renal disease markers with CV risk factors confirms a strong link between renal and CV disease in the early, asymptomatic stages of each. Thus, pathologic albuminuria, in part, might be a manifestation of the metabolic/haemodynamic syndrome and both conditions might arise out of a common menu of risk factors. Hence, a single agenda of primary and secondary intervention may benefit both.
Resumo:
Background. Australian Aborigines are experiencing epidemic proportions of renal disease, marked by albuminuria and, variably, hematuria. They also have high rates of low birth weight, which have been associated with lower kidney volumes and higher blood pressures. The authors evaluated relationships between kidney volume, blood pressure, albuminuria, and hematuria in 1 homogeneous group. Methods Forty-three percent (672 of 1,560) of the population in a remote coastal Australian Aboriginal community aged 4.4 to 72.1 years participated in the study. Results: Kidney size correlated closely with body size. Systolic blood pressure (SBP) was correlated inversely with kidney length and kidney volume, after adjusting for age, sex, and body surface area (BSA); a 1-cm increase in mean kidney length was associated with a 2.2-mm Hg decrease in SBP, and a 10-mL increase in mean kidney volume was associated with a 0.6-mm Hg decrease in SBP (P = 0.001). Mean kidney volume explained 10% of the variance in SBP in a multivariate model containing age, sex, and BSA. In addition to higher SBP, adults who had the lowest quartiles of kidney volume also had the highest levels of overt albuminuria (P = 0.044). Conclusion: Smaller kidneys predispose to higher blood pressures and albuminuria in this population. The lower volumes possibly represent kidneys with reduced nephron numbers, which might be related to an adverse intrauterine environment. Susceptibility to renal disease could be a direct consequence of reduced nephron numbers; the higher blood pressures with which they are associated could also contribute to, as well as derive from, this association.
Resumo:
Background. In the Southeast United States, African Americans have an estimated incidence of hypertension and end-stage renal disease (ESRD) that is five times greater than Caucasians. Higher rates of low birth weight (LBW) among African Americans is suggested to predispose African Americans to the higher risk, possibly by reducing the number of glomeruli that develop in the kidney. This study investigates the relationships between age, race, gender, total glomerular number (N-glom), mean glomerular volume (V-glom), body surface area (BSA), and birth weight. Methods. Stereologic estimates of N-glom and V-glom were obtained using the physical disector/fractionator combination for autopsy kidneys from 37 African Americans and 19 Caucasians. Results. N-glom was normally distributed and ranged from 227,327 to 1,825,380, an 8.0-fold difference. A direct linear relationship was observed between N-glom and birth weight (r=0.423, P=0.0012) with a regression coefficient that predicted an increase of 257,426 glomeruli per kilogram increase in birth weight (alpha=0.050:0.908). Among adults there was a 4.9-fold range in V-glom , and in adults, V-glom was strongly and inversely correlated with N-glom (r=-0.640, P=0.000002). Adult V-glom showed no significant correlation with BSA for males (r=-0.0150, P=0.936), although it did for females (r=0.606, P=0.022). No racial differences in average N-glom or V-glom were observed. Conclusion. Birth weight is a strong determinant of N-glom and thereby of glomerular size in the postnatal kidney. The findings support the hypothesis that LBW by impairing nephron development is a risk factor for hypertension and ESRD in adulthood.
Resumo:
To date, a role for agouti signalling protein (ASIP) in human pigmentation has not been well characterized. It is known that agouti plays a pivotal role in the pigment switch from the dark eumelanin to the light pheomelanin in the mouse. However, because humans do not have an agouti banded hair pattern, its role in human pigmentation has been questioned. We previously identified a single polymorphism in the 3'-untranslated region (UTR) of ASIP that was found at a higher frequency in African-Americans compared with other population groups. To compare allele frequencies between European-Australians and indigenous Australians, the g.8818A -> G polymorphism was genotyped. Significant differences were seen in allele frequencies between these groups (P < 0.0001) with carriage of the G allele highest in Australian Aborigines. In the Caucasian sample set a strong association was observed between the G allele and dark hair colour (P = 0.004) (odds ratio 4.6; 95% CI 1.4-15.27). The functional consequences of this polymorphism are not known but it was postulated that it might result in message instability and premature degradation of the transcript. To test this hypothesis, ASIP mRNA levels were quantified in melanocytes carrying the variant and non-variant alleles. Using quantitative real-time polymerase chain reaction the mean ASIP mRNA ratio of the AA genotype to the AG genotype was 12 (P < 0.05). This study suggests that the 3'-UTR polymorphism results in decreased levels of ASIP and therefore less pheomelanin production.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
Low nephron number has been related to low birth weight and hypertension. In the southeastern United States, the estimated prevalence of chronic kidney disease due to hypertension is five times greater for African Americans than white subjects. This study investigates the relationships between total glomerular number (N-glom), blood pressure, and birth weight in southeastern African Americans and white subjects. Stereological estimates of N-glom were obtained using the physical disector/fractionator technique on autopsy kidneys from 62 African American and 60 white subjects 30-65 years of age. By medical history and recorded blood pressures, 41 African Americans, and 24 white subjects were identified as hypertensive and 21 African Americans and 36 white subjects as normotensive. Mean arterial blood pressure ( MAP) was obtained on 81 and birth weights on 63 subjects. For African Americans, relationships between MAP, N-glom, and birth weight were not significant. For white subjects, they were as follows: MAP and N-glom ( r = -0.4551, P = 0.0047); Nglom and birth weight ( r = 0.5730, P = 0.0022); MAP and birth weight ( r = -0.4228, P = 0.0377). For African Americans, average N-glom of 961 840 +/- 292 750 for normotensive and 867 358 +/- 341 958 for hypertensive patients were not significantly different ( P = 0.285). For white subjects, average N-glom of 923 377 +/- 256 391 for normotensive and 754 319 +/- 329 506 for hypertensive patients were significantly different ( P = 0.03). The data indicate that low nephron number and possibly low birth weight may play a role in the development of hypertension in white subjects but not African Americans.
Resumo:
This paper presents a set of hypotheses to explain the cultural differences between Aboriginal people of the North and South Wellesley Islands, Gulf of Carpentaria and to characterise the relative degree and nature of their isolation and cultural change over a 10,000-year time-scale. This opportunity to study parallelisms and divergences in the cultural and demographic histories of fisher-hunter-gatherers arises from the comparison of three distinct cultural groupings: (a) the Ganggalida of the mainland, (b) the Lardil and Yangkaal of the North Wellesley Islands, and (c) the Kaiadilt of the South Wellesley Islands. Despite occupying similar island environments and despite their languages being as closely related as for example, the West Germanic languages, there are some major differences in cultural, economic and social organization as well as striking genetic differences between the North and South Wellesley populations. This paper synthesizes data from linguistics, anthropology, archaeology, genetics and environmental science to present hypotheses of how these intriguing differences were generated, and what we might learn about early processes of marine colonization and cultural change from the Wellesley situation.