8 resultados para Atlantic Cod
em University of Queensland eSpace - Australia
Resumo:
The volume of the primary (PCS) and secondary (SCS) circulatory system in the Atlantic cod Gadus morhua was determined using a modified dye dilution technique. Cod (N=10) were chronically cannulated in the second afferent branchial artery with PE-50 tubing. Evans Blue dye was bound to harvested fish plasma at a concentration of 1 mg dye ml(-1) plasma, and injected at a concentration of 1 mg kg(-1) body mass. Serial sampling from the cannula produced a dye dilution curve, which could be described by a double exponential decay equation. Curve analysis enabled the calculation of the primary circulatory and total distribution volume. The difference between these volumes is assumed to be the volume of the SCS. From the dilution curve, it was also possible to calculate flow rates between and within the systems. The results of these experiments suggest a plasma volume in the PCS of 3.42+/-0.89 ml 100 g(-1) body mass, and in the SCS of 1.68+/-0.35 ml 100 g(-1) body mass (mean +/- S.D.) or approximately 50% that of the PCS. Flow rates to the SCS were calculated as 2.7% of the resting cardiac output. There was an allometric relationship between body mass and blood volumes. Increasing condition factor showed a tendency towards smaller blood volumes of the PCS, expressed as percentage body mass, but this was not evident for the volume of the SCS.
Resumo:
Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.
Resumo:
Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel Anguilla reinhardtii were examined by light and transmission electron microscopy. Interarterial anastomoses were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to anastomose with a secondary vessel running in parallel with the primary counterpart. In contrast to findings from other species, secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, with a single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these appeared more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it is anticipated that flow through secondary vessels to some extent is affected by the vascular tone of the primary vessel. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. No immunoreactivity was observed on primary or secondary arteries against neuropeptide Y or calcitonin gene-related peptide.
Resumo:
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.
Resumo:
The characteristics of nitrogen acquisition, transport and assimilation were investigated in species of an Atlantic Forest succession over calcareous soil in south-eastern Brazil. Differences in behaviour were observed within the regeneration guilds. Pioneer species showed high leaf nitrogen contents, a high capacity to respond to increased soil nitrogen availability, a high capacity for leaf nitrate assimilation and were characterized by the transport of nitrate + asparagine. At the other end of the succession, late secondary species had low leaf nitrogen contents, little capacity to respond to increased soil nitrogen availability, low leaf nitrate assimilation and were active in the transport of asparagine + arginine. The characteristics of nitrogen nutrition in some early secondary species showed similarities to those of pioneer species whereas others more closely resembled late secondary species. Average leaf delta(15)N values increased along the successional gradient. The results indicate that the nitrogen metabolism characteristics of species may be an additional ecophysiological tool in classifying tropical forest tree species into ecological guilds, and may have implications for regeneration programmes in degraded areas.