1 resultado para Asymptotic Test
em University of Queensland eSpace - Australia
Filtro por publicador
- JISC Information Environment Repository (3)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (2)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (21)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (2)
- Brock University, Canada (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (5)
- Cámara de Comercio de Bogotá, Colombia (10)
- Cambridge University Engineering Department Publications Database (110)
- CentAUR: Central Archive University of Reading - UK (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (96)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (102)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (9)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (243)
- Queensland University of Technology - ePrints Archive (195)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional de la Universidad Nacional Agraria (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (13)
- Université de Montréal, Canada (46)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (1)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
There are at least two reasons for a symmetric, unimodal, diffuse tailed hyperbolic secant distribution to be interesting in real-life applications. It displays one of the common types of non normality in natural data and is closely related to the logistic and Cauchy distributions that often arise in practice. To test the difference in location between two hyperbolic secant distributions, we develop a simple linear rank test with trigonometric scores. We investigate the small-sample and asymptotic properties of the test statistic and provide tables of the exact null distribution for small sample sizes. We compare the test to the Wilcoxon two-sample test and show that, although the asymptotic powers of the tests are comparable, the present test has certain practical advantages over the Wilcoxon test.