23 resultados para Astronautics.
em University of Queensland eSpace - Australia
Resumo:
A stress-wave force balance for measurement of thrust, lift, and pitching moment on a large scramjet model (40 kg in mass, 1.165 in in length) in a reflected shock tunnel has been designed, calibrated, and tested. Transient finite element analysis was used to model the performance of the balance. This modeling indicates that good decoupling of signals and low sensitivity of the balance to the distribution of. the load can be achieved with a three-bar balance. The balance was constructed and calibrated by applying a series of point loads to the model. A good comparison between finite element analysis and experimental results was obtained with finite element analysis aiding in the interpretation of some experimental results. Force measurements were made in a shock tunnel both with and without fuel injection, and measurements were compared with predictions using simple models of the scramjet and combustion. Results indicate that the balance is capable of resolving lift, thrust, and pitching moments with and without combustion. However vibrations associated with tunnel operation interfered with the signals indicating the importance of vibration isolation for accurate measurements.
Resumo:
Shvab-Zeldovich coupling of flow variables has been used to extend Van Driest's theory of turbulent boundary-layer skin friction to include injection and combustion of hydrogen in the boundary layer. The resulting theory is used to make predictions of skin friction and heat transfer that are found to be consistent with experimental and numerical results. Using the theory to extrapolate to larger downstream distances at the same experimental conditions, it is found that the reduction in skin-friction drag with hydrogen mixing and combustion is three times that with mixing alone. In application to flow on a flat plate at mainstream velocities of 2, 4, and 6 knits, and Reynolds numbers from 3 X 10(6) to 1 x 10(8), injection and combustion of hydrogen yielded values of skin-friction drag that were less than one-half of the no-injection skin-friction drag, together with a net reduction in heat transfer when the combustion heat release in air was less than the stagnation enthalpy. The mass efficiency of hydrogen injection, as measured by effective specific impulse values, was approximately 2000 s.