14 resultados para Aspect ratio
em University of Queensland eSpace - Australia
Resumo:
The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the evolution of the state of dispersion of organically modified montmorillonites in epoxy or amine precursors. The epoxy prepolymer is a diglycidyl ether of bisphenol A (DGEBA) and the curing agent is an aliphatic diamine with a polyoxypropylene backbone (Jeffamine D2000). The clay dispersion is evaluated at the platelet scale (nanoscopic scale) from X-ray spectrometry [wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS)] and at the aggregates scale (microscopic scale) from rheological analysis. The organoclays used form gels in the monomers above the percolation threshold if no shear is applied and present a mechanical gel/sol transition when shear stress increases. Gel strength and viscosity at high shear rates are linked to the nanometric state of dispersion and reveal the existence of two different organizations depending on organoclay/monomer interactions: (i) When the clay shows good interactions with the monomer, a significant swelling of the clay galleries by the monomer is obtained. These swollen particles lead to formation of weak gels which after shearing give high relative viscosity fluids. (ii) When the clay develops poor interactions with the monomer, the clay tends to reduce its exchange surface with the monomer and leads to a strongly connected gel. Shear breaks down this physical network leading to a very low relative viscosity fluid composed of nonswollen particles keeping a high aspect ratio. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
A novel class of nonlinear, visco-elastic rheologies has recently been developed by MUHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MUHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number Ra=5.64x10(5) for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.
Resumo:
We investigate the dynamics of the capillary thinning and break-up process for low viscosity elastic fluids such as dilute polymer solutions. Standard measurements of the evolution of the midpoint diameter of the necking fluid filament are augmented by high speed digital video images of the break up dynamics. We show that the successful operation of a capillary thinning device is governed by three important time scales (which characterize the relative importance of inertial, viscous and elastic processes), and also by two important length scales (which specify the initial sample size and the total stretch imposed on the sample). By optimizing the ranges of these geometric parameters, we are able to measure characteristic time scales for tensile stress growth as small as 1 millisecond for a number of model dilute and semi-dilute solutions of polyethylene oxide (PEO) in water and glycerol. If the final aspect ratio of the sample is too small, or the total axial stretch is too great, measurements are limited, respectively, by inertial oscillations of the liquid bridge or by the development of the well-known beads-on-a-string morphology which disrupt the formation of a uniform necking filament. By considering the magnitudes of the natural time scales associated with viscous flow, elastic stress growth and inertial oscillations it is possible to construct an operability diagram characterizing successful operation of a capillary break-up extensional rheometer. For Newtonian fluids, viscosities greater than approximately 70 mPas are required; however for dilute solutions of high molecular weight polymer, the minimum Viscosity is substantially lower due to the additional elastic stresses arising from molecular extension. For PEO of molecular weight 2.10(6) g/mol, it is possible to measure relaxation times of order 1 ms in dilute polymer solutions with zero-shear-rate viscosities on the order of 2-10 mPas.
Resumo:
Extensions to Batchelor's theory have been derived to take into account different shaped particles while relating extensional viscosity enhancement to three parameters - shape, volume fraction and particle aspect ratio. The extended theory now allows calculation of the extensional viscosity enhancement, at a given volume fraction of particles, for either ellipsoidal or cylindrical particles. The formula improves the predictive capability of Batchelor's theory when compared with measurements found in the literature for different rod-like polymer solutions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.
Resumo:
Three particular geometrical shapes of parallelepiped, cylinder and sphere were selected from cut beans (length : diameter = 1: 1, 2:1, 3: 1), potatoes (aspect ratio = 1:1, 2:1, 3:1) and peas, respectively. The dimensional shrinkage behavior was studied in a batch fluidized bed at three drying temperatures of 30, 40 and 50C. Relative humidity of hot air was kept at 15%. Dimensional shrinkage was plotted using a nondimensional moisture ratio and the shrinkage behavior of the selected foods was modeled with simple mathematical models.
Resumo:
The microstructures of industrial ISF and synthetic sinters were examined. The principle phases present were found to consist of zincite, spinel and glass. The morphologies of the zincite phase in these complex multiphase materials were shown to relate directly to the bulk chemical compositions and thermal histories of the sinters. The conditions favouring the formation of plate-like zincite, essential for the development of refractory networks in the ISF sinters, were identified. The proportion of framework zincite present in the sinters was found to increase with increasing peak bed temperature and an increasing CaO/SiO2 ratio. The aspect ratio of the zincite increases by increasing iron in the solid solution in zincite.
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.
Resumo:
Segmented polyurethane nanocomposites containing three different size fractions of SomasifTM ME100 (synthetic fluoromica) have been prepared via solvent casting. The platelet size was adjusted via a proprietary milling process, and average diameters of approximately 500 nm, 100 nm and 30 nm were measured via TEM. To the best of our knowledge this is the first time the effect of aspect ratio has been studied with the same t-o-t structured mineral. The mechanical properties of these nanocomposites have been found to be highly dependent upon the platelet size. Depending on the aspect ratio and surface treatment selected, significant improvements in tensile strength can be achieved with a minimal reduction in resilience: a problem encountered with elastomeric layered silicate nanocomposites.