20 resultados para Architecture and society
em University of Queensland eSpace - Australia
Resumo:
The WSIS is centrally interested in knowledge and has defined for itself a mission that is broadly humanitarian. Its development ‘talk’ is, rightly, replete with notions of equity, preserving culture, justice, human rights and so on. In incorporating such issues into knowledge society and economy discussions, WSIS has adopted a different posture towards knowledge than is seen in dominant discourses. This study analyses the dominant knowledge discourse using a large corpus of knowledge-related policy documents, discourse theory and an interrelational understanding of knowledge. I show that it is important to understand this dominant knowledge discourse because of its capacity to limit thought and action in relation to its central topic, knowledge. The results of this study demonstrate that the dominant knowledge discourse is technocratic, frequently insensitive to the humane mission at the core of the WSIS, and is based on a partial understanding of what knowledge is and how knowledge systems work. Moreover, I show that knowledge is inherently political, that the dominant knowledge discourse is politically oriented towards the concerns of business and technology, but that an emancipatory politics of knowledge is possible.
Resumo:
Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a welldefined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
Resumo:
Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. Methods A japonica type rice, 'Namaga', was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create '3D virtual rice' plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The '3D virtual rice' reproduces the structural development of isolated plants and provides a good estimation of the fillering process, and of the accumulation of leaves. Conclusions The results indicated that the '3D virtual rice' has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The LCST transitions of novel N-isopropylacrylamide ( NIPAM) star polymers, prepared using the four-armed RAFT agent pentaerythritoltetrakis(3-(S-benzyltrithiocarbonyl) propionate) (PTBTP) and their hydrolyzed linear arms were studied using H-1 NMR, PFG-NMR, and DLS. The aim was to determine the effect of polymer architecture and the presence of end groups derived from RAFT agents on the LCST. The LCST transitions of star PNIPAM were significantly depressed by the presence of the hydrophobic star core and possibly the benzyl end groups. The effect was molecular weight dependent and diminished once the number of repeating units per arm >= 70. The linear PNIPAM exhibited an LCST of 35 degrees C, regardless of molecular weight; the presence of both hydrophilic and hydrophobic end groups after hydrolysis from the star core was suggested to cancel effects on the LCST. A significant decrease in R-H was observed below the LCST for star and linear PNIPAM and was attributed to the formation of n-clusters. Application of a scaling law to the linear PNIPAM data indicated the cluster size n = 6. Tethering to the hydrophobic star core appeared to inhibit n-cluster formation in the lowest molecular weight stars; this may be due to enhanced stretching of the polymer chains, or the presence of larger numbers of n-clusters at temperatures below those measured.