55 resultados para Architecture Studio
em University of Queensland eSpace - Australia
Resumo:
The design of liquid-retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgement, codes of practice and previous experience. Structural design problems are often ill structured and there is a need to develop programming environments that can incorporate engineering judgement along with algorithmic tools. Recent developments in artificial intelligence have made it possible to develop an expert system that can provide expert advice to the user in the selection of design criteria and design parameters. This paper introduces the development of an expert system in the design of liquid-retaining structures using blackboard architecture. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a coupled system combining symbolic processing with traditional numerical processing. The expert system developed is based on British Standards Code of Practice BS8007. Explanations are made to assist inexperienced designers or civil engineering students to learn how to design liquid-retaining structures effectively and sustainably in their design practices. The use of this expert system in disseminating heuristic knowledge and experience to practitioners and engineering students is discussed.
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Timber framing and roof skylight detail inside garage-studio.
Resumo:
This paper concerns a collaborative experiment in architectural design teaching and thinking developed during a workshop held at The University of Queensland in 2000. The programme explored the possibilities and the consequences of relocating location-specific architecture to a different context - a 'Trans-Cultural Trans-Location'. The project involved the careful study by Australia-based students of a house designed for a Japanese family in a dense part of Tokyo by the eminent Japanese architect Tadao Ando, and the subsequent translocation of the ideas that underlay the building to a suburban location in Brisbane, for a theoretical equivalent Australian family. This experimental project examined the universality of architectural concepts, their appreciation and the pedagogical setting. The project raised questions of: - How well do students from one culture comprehend architecture designed specifically for another – which are the areas of misunderstanding and understanding? - How can students transpose architectural ideas from one social and physical context to one that is almost entirely the opposite? - What are the limits of collaboration and exchange in design teaching and how do they reveal similarities, inconsistencies and the unexpected in the aims of the teacher and of the student? These questions suggest that in order to comprehend a design, we must understand the culture within which it originated, and that we must understand the cultures within which we work in order to design. This paper is written in two parts. The first part establishes a framework for discussing the contrast of the cultural settings studied. The second part considers the nature, conduct and results of the Studio Workshop itself.
Resumo:
View through courtyard to lower studio dining room, as seen from upper living area.
Resumo:
View through courtyard to lower studio dining room, as seen from upper living area.
Resumo:
View through courtyard to lower studio dining room, as seen from upper living area.
Resumo:
View through courtyard to dining studio as seen from upper living room.
Resumo:
Architecture of the Pacific covers a region of more than third of the earth’s surface. The sparse Pacific population spreads over some 30 000 islands, which graduate in size from small atolls to the largest island, Australia, a continent. Pacific architecture can be studied as four cultural units: Micronesia, Polynesia, Melanesia, and Australasia (Australia and New Zealand). While many of the islands of Micronesia lie above the Equator, the remaining Pacific islands are in the southern hemisphere. With the exception of Australia, most of the islands have a warm and humid tropical climate with high rainfalls and lush vegetation. Some islands lie in the cyclonic and earthquake belts. Two distinct racial groups settled the region. The indigenous people, the Micronesians, Melanesians, Polynesians, Australian Aborigines and New Zealand Maoris, migrated from Asia thousands of years ago. The second group, the recent immigrants, were Europeans, who occupied the region during the last two centuries, and pockets of Asians brought in by colonial administrations as labourers during the early twentieth century.