40 resultados para Antimicrobial packaging
em University of Queensland eSpace - Australia
Resumo:
Wolbachia are intracellular maternally inherited microorganisms that are associated with reproductive abnormalities such as cytoplasmic incompatibility (CI), feminization and parthenogenesis in the various arthropod species they infect. Surveys indicate that these bacteria infect more than 16% of all insect species as well as isopods, mites and nematodes, making Wolbachia one of the most ubiquitous parasites yet described. However, nothing is known about the interactions of this bacterium with the host's immune system. We studied the expression of inducible antimicrobial markers in the adults of two Wolbachia infected insect species, Drosophila simulans and Aedes albopictus. The lack of available immune markers in the mosquito species led us to clone part of the defensin gene from this species, which was found to be very similar to the other mosquito defensins cloned from Anopheles gambiae and Aedes aegypti. Comparisons of the expression pattern of the antibacterial markers between Wolbachia-infected and cured lines, and also between bacteria-challenged and unchallenged adults indicated that Wolbachia does not either constitutively induce or suppress the transcription of these antibacterial genes. In addition, no difference in the transcription of these genes was found between double and single Wolbachia-infected strains or between strains in which Wolbachia has different tissue tropisms.
Resumo:
Bacteria have been implicated in the pathogenesis and progression of pulp and periapical diseases. The primary aim of endodontic treatment is to remove as many bacteria as possible from the root canal system and then to create an environment in which any remaining organisms cannot survive. This can only be achieved through the use of a combination of aseptic treatment techniques, chemomechanical preparation of the root canal, antimicrobial irrigating solutions and intracanal medicaments. The choice of which intracanal medicament to use is dependent on having an accurate diagnosis of the condition being treated, as well as a thorough knowledge of the type of organisms likely to be involved and. their mechanisms of growth and survival. Since the disease is likely to have been caused by the presence of bacteria within the root canal, the use of an antimicrobial agent is essential. Many medicaments have been used in an attempt to achieve the above aims, but no single preparation has been found to be completely predictable or effective. Commonly used medicaments include calcium hydroxide, antibiotics; non-phenolic biocides, phenolic biocides and iodine compounds. Each has advantages and disadvantages, and further research is required to determine which is best suited for root canal infections.
Resumo:
Encapsidation of circular DNA by papillomavirus capsid protein was investigated in Cos-1 cells. Plasmids carrying both an SV40 origin of replication (or) and an E. coli on were introduced into Cos-1 cells by DNA transfection. PV capsid proteins were supplied in trans by recombinant vaccinia viruses. Pseudovirions were purified from infected cells and their packaged DNA was extracted and used to transform E. coil as an indication of packaging efficacy. VLPs assembled from BPV-1 L1 alone packaged little plasmid DNA, whereas VLPs assembled from BPV-1 L1+L2 packaged plasmid DNA at least 50 times more effectively. BPV-1 L1+L2 VLPs packaged a plasmid containing BPV-1 sequence 8.2 +/- 3.1 times more effectively than a plasmid without BW sequences. Using a series of plasmid constructs comprising a core BPV-1 sequence and spacer DNA it was demonstrated that BW VLPs could accommodate a maximum of about 10.2 kb of plasmid DNA, and that longer closed circular DNA was truncated to produce less dense virions with shorter plasmid sequences. The present study suggests that packaging of genome within PV virions involves interaction of L2 protein with specific DNA sequences, and demonstrates that PV pseudovirions have the potential to be used as DNA delivery vectors for plasmids of up to 10.2 kb. (C) 1998 Academic Press.
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
In contrast to other mammalian defensins, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue, oRTD-1, although both peptides adopt very similar structures in water. It was suggested that the additional charges at the termini of oRTD-1 are the cause for its lower antimicrobial activity. Therefore, we studied the interaction of both peptides with membrane mimics composed of zwitterionic (PC) and negatively charged (PG) phospholipids, major lipid components of erythrocyte and bacterial cell membranes, respectively. Microcalorimetry showed that RTD-1 and oRTD-1 did not affect the phase behavior of PC liposomes, while in PG liposomes both peptides induced new phase transitions above the chain melting transition of the lipid. The shape and fraction differed between both peptides, depending also on their concentration, which will be discussed in terms of their antimicrobial activity.
Resumo:
Chemorheology (and thus process modeling) of highly filled thermosets used in integrated circuit (IC) packaging has been complicated by their highly filled nature, fast kinetics of curing, and viscoelastic nature. This article summarizes a more thorough chemorheological analysis of a typical IC packaging thermoset material, including novel isothermal and nonisothermal multiwave parallel-plate chemorheology. This new chemorheological analysis may be used to optimize existing and design new IC packaging processes. (C) 1997 John Wiley & Sons, Inc.
Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes
Resumo:
Most mammalian defensins are cationic peptides of 29-42 amino acids long, stabilized by three disulfide bonds. However, recently Tang et al. (1999, Science 286, 498-502) reported the isolation of a new defensin type found in the leukocytes of rhesus macaques. In contrast to all the other defensins found so far, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue [Tang et al. (1999) Science 286, 498-502]. To elucidate the three-dimensional structure of RTD-1 and its open chain analogue, both peptides were synthesized using solid-phase peptide synthesis and tert-butyloxycarbonyl chemistry. The structures of both peptides in aqueous solution were determined from two-dimensional H-1 NMR data recorded at 500 and 750 MHz. Structural constraints consisting of interproton distances and dihedral angles were used as input for simulated-annealing calculations and water refinement with the program CNS. RTD-1 and its open chain analogue oRTD-1 adopt very similar structures in water. Both comprise an extended beta -hairpin structure with turns at one or both ends. The turns are well defined within themselves and seem to be flexible with respect to the extended regions of the molecules. Although the two strands of the beta -sheet are connected by three disulfide bonds, this region displays a degree of flexibility. The structural similarity of RTD-1 and its open chain analogue oRTD-1, as well as their comparable degree of flexibility, support the theory that the additional charges at the termini of the open chain analogue rather than overall differences in structure or flexibility are the cause for oRTD-1's lower antimicrobial activity. In contrast to numerous other antimicrobial peptides, RTD-1 does not display any amphiphilic character, even though surface models of RTD-1 exhibit a certain clustering of positive charges. Some amide protons of RTD-1 that should be solvent-exposed in monomeric beta -sheet structures show low-temperature coefficients, suggesting the possible presence of weak intermolecular hydrogen bonds.
Resumo:
In order to study whether flavivirus RNA packaging is dependent on RNA replication, we generated two DNA-based Kunjin virus constructs, pKUN1 and pKUN1dGDD, allowing continuous production of replicating (wild-type) and nonreplicating (with a deletion of the NS5 gene RNA-polymerase motif GDD) full-length Kunjin virus RNAs, respectively, via nuclear transcription by cellular RNA polymerase II. As expected, transfection of pKUN1 plasmid DNA into BHK cells resulted in the recovery of secreted infectious Kunjin virions. Transfection of pKUN1dGDD DNA into BHK cells, however, did not result in the recovery of any secreted virus particles containing encapsidated dGDD RNA, despite an apparent accumulation of this RNA in cells demonstrated by Northern blot analysis and its efficient translation demonstrated by detection of correctly processed labeled structural proteins (at least prM and E) both in cells and in the culture fluid using coimmunoprecipitation analysis with anti-E antibodies. In contrast, when dGDD RNA was produced even in much smaller amounts in PKUN1dGDD DNA-transfected repBHK cells (where it was replicated via complementation), it was packaged into secreted virus particles, Thus, packaging of defective Kunjin virus RNA could occur only when it was replicated. Our results with genome-length Kunjin virus RNA and the results with poliovirus replicon RNA (C, I. Nugent et al,, J, Virol, 73:427-435, 1999), both demonstrating the necessity for the RNA to be replicated before it can be packaged, strongly suggest the existence of a common mechanism for minimizing amplification and transmission of defective RNAs among the quasispecies in positive-strand RNA viruses, This mechanism may thus help alleviate the high-copy error rate of RNA-dependent RNA polymerases.
Resumo:
The novel antimicrobial peptide MiAMP1, originally isolated from the seeds of Macadamia integrifolia, was constitutively expressed in transgenic tobacco and canola plants to test its effect on disease resistance. Analysis of plants transformed with 35S-MiAMP1 construct by northern and western blot analyses demonstrated the presence of MiAMP1 mRNA and the mature peptide in the transgenic plants. The MiAMP1 purified from the leaves of transgenic plants was biologically active with the same in vitro antifungal activity as native MiAMP1 purified from the seeds of macadamia. The effect of MiAMP1 expression on the economically important canola pathogen Leptosphaeria maculans (causal agent of blackleg disease) was evaluated in comparison with an untransformed control line and an azygous segregant derived from one of the transgenic lines. Lesion development on the cotyledons of the inoculated canola seedlings was significantly reduced in the T-2 progeny of seven independently transformed transgenic lines. These results suggested that, transgenic canola expressing MiAMP1 may be useful for the management of blackleg disease.
Resumo:
Antimicrobial peptides occur in a diverse range of organisms from microorganisms to insects, plants and animals. Although they all have the common function of inhibiting or killing invading microorganisms they achieve this function using an extremely diverse range of structural motifs. Their sizes range from approximately 10-90 amino acids. Most carry an overall positive charge, reflecting a preferred mode of electrostatic interaction with negatively charged microbial membranes. This article describes the structural diversity of a representative set of antimicrobial peptides divided into five structural classes: those with agr-helical structure, those with bgr-sheet structure, those with mixed helical / bgr- sheet structure, those with irregular structure, and those incorporating a macrocyclic structure. There is a significant diversity in both the size and charge of molecules within each of these classes and between the classes. The common feature of their three-dimensional structures is, however, that they have a degree of amphipathic character in which there is separate localisation of hydrophobic regions and positively charged regions. An emerging trend amongst antimicrobial proteins is the discovery of more macrocyclic analogues. Cyclisation appears to impart an additional degree of stability on these molecules and minimizes proteolytic cleavage. In conclusion, there appear to be a number of promising opportunities for the development of novel clinically useful antimicrobial peptides based on knowledge of the structures of naturally occurring antimicrobial molecules.
Resumo:
An annual survey of antimicrobial resistance in clinical isolates of Staphylococcus aureus was conducted in 21 Australian teaching hospital microbiology laboratories in eight major cities from 1989 to 1999. A total of 19,000 isolates were tested for susceptibility to 18 antimicrobials, with 3795 being methicillin-resistant (MRSA). Resistance to ciprofloxacin in MRSA increased from 4.9% to 75.9%. The proportion of MRSA resistant to erythromycin decreased significantly (99.0%-88.9%), as did that to trimethoprim (98.4%-82.4%) and to tetracycline (96.5%-80.1%). The proportion of MRSA isolated increased in Sydney, Melbourne, Canberra, Adelaide, Perth, and Darwin, but not in Brisbane. The proportion in Hobart peaked in 1994. MRSA in Perth were predominantly non-multiresistant (nmMRSA) throughout the survey (i.e., resistant to less than three of eight indicator antibiotics) due mainly to local strains that originated in the community. The proportion of nmMRSA increased to modest levels in the other cities. In eastern cities, this was due to the appearance of strains closely related to nmMRSA seen in other countries of the southwestern Pacific.