50 resultados para Animals, Zoo
em University of Queensland eSpace - Australia
Resumo:
The Digenea is one of five major helminth assemblages represented in Australian animals. History of the study of digeneans in Australia is reviewed briefly to show that it has never been subjected to the kind of sustained study needed to reach an understanding of it. The Australian vertebrate fauna comprises over 5500 species. These have so far been shown to harbour just over 70 families, about 306 genera and 566 species of digeneans. Digeneans occur in all classes of vertebrates in Australia but are distributed very unevenly; aquatic hosts are generally most heavily infected, but many terrestrial species are also infected. Particular weaknesses in knowledge of the fauna concern the bats, cetaceans and teleosts. Another weakness is in knowledge of life-cycles; representative life-cycles are known for only about 20 of the 70 families known in Australia. Estimates of the overall size of the fauna are dependent on an understanding of sampling strategies, the heterogeneity of distribution of the fauna, and the nature of host-specificity. These subjects are reviewed briefly and an estimate of the total fauna is made. There may be as many as 6000 species of digeneans in Australia. (C) 1998 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
Wildlife tourism has the potential to contribute to conservation through a variety of mechanisms. This chapter presents a preliminary assessment of the extent to which this potential is currently being realised, comparing tourism based on viewing of animals in captive settings (with a focus on federated zoos) with that in free-ranging situations (wildlife watching). The key mechanisms involved are: direct wildlife management and research; use of income derived from wildlife tourism to fund conservation; education of visitors to behave in a more conservation-friendly manner; political lobbying in support of conservation; and provision of a socio-economic incentive for conservation. All of these occur in at least some zoos and wildlife-watching situations, and collectively the contribution of non-consumptive wildlife tourism to conservation is significant, though impossible to quantify. The key strengths of the zoo sector in this regard are its inputs into captive breeding and its potential to educate large numbers of people. in contrast, wildlife watching provides significant socio-economic incentives for conservation of natural habitats. There seem to be significant opportunities for expanding the role of non-consumptive wildlife tourism in conservation.
Resumo:
This paper reviews and evaluates zoo tourism worldwide, including the scope of the industry, its key issues and its impacts on wildlife, host communities and economies, and provides guidelines for its further development and sustainability. It is a paper that has been widely used by the zoo industry particularly as a basis for evaluating its scope, impact and development. Tribe, A. was the sole author.
Resumo:
Recent interest in the development and evolution of theory of mind has provided a wealth of information about representational skills in both children and animals, According to J, Perrier (1991), children begin to entertain secondary representations in the 2nd year of life. This advance manifests in their passing hidden displacement tasks, engaging in pretense and means-ends reasoning, interpreting external representations, displaying mirror self-recognition and empathic behavior, and showing an early understanding of mind and imitation. New data show a cluster of mental accomplishments in great apes that is very similar to that observed in 2-year-old humans. It is suggested that it is most parsimonious to assume that this cognitive profile is of homologous origin and that great apes possess secondary representational capacity. Evidence from animals other than apes is scant. This analysis leads to a number of predictions for future research.
Resumo:
A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The main focus of the human genome sequencing project has been gene discovery, but a great additional benefit is that it offers the chance to examine the large proportion of the genome that does not contain human genes. The nature of this ‘noncoding’ DNA is poorly understood, both as an evolutionary question (how did it get there?) and in the functional sense (what is it doing now?). Much of the noncoding DNA is derived from retroviruses that have inserted their DNA into the genome. The availability of complete genomic sequences will revolutionize studies of the number and location of endogenous retroviruses, their role in genome evolution, and their contribution to human disease.