4 resultados para Animal testing

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We outline and evaluate competing explanations of three relationships that have consistently been found between cannabis use and the use of other illicit drugs, namely, ( 1) that cannabis use typically precedes the use of other illicit drugs; and that ( 2) the earlier cannabis is used, and ( 3) the more regularly it is used, the more likely a young person is to use other illicit drugs. We consider three major competing explanations of these patterns: ( 1) that the relationship is due to the fact that there is a shared illicit market for cannabis and other drugs which makes it more likely that other illicit drugs will be used if cannabis is used; ( 2) that they are explained by the characteristics of those who use cannabis; and ( 3) that they reflect a causal relationship in which the pharmacological effects of cannabis on brain function increase the likelihood of using other illicit drugs. These explanations are evaluated in the light of evidence from longitudinal epidemiological studies, simulation studies, discordant twin studies and animal studies. The available evidence indicates that the association reflects in part but is not wholly explained by: ( 1) the selective recruitment to heavy cannabis use of persons with pre-existing traits ( that may be in part genetic) that predispose to the use of a variety of different drugs; ( 2) the affiliation of cannabis users with drug using peers in settings that provide more opportunities to use other illicit drugs at an earlier age; ( 3) supported by socialisation into an illicit drug subculture with favourable attitudes towards the use of other illicit drugs. Animal studies have raised the possibility that regular cannabis use may have pharmacological effects on brain function that increase the likelihood of using other drugs. We conclude with suggestions for the type of research studies that will enable a decision to be made about the relative contributions that social context, individual characteristics, and drug effects make to the relationship between cannabis use and the use of other drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used an animal model to test the reliability of a new portable continuous-wave Doppler ultrasonic cardiac output monitor, the USCOM. In six anesthetized dogs, cardiac output was measured with a high-precision transit time ultrasonic flowprobe placed on the ascending aorta. The dogs' cardiac output was increased with a dopamine infusion (0-15 mug (.) kg(-1) (.) min(-1)). Simultaneous flowprobe and USCOM cardiac output measurements were made. Up to 64 pairs of readings were collected from each dog. Data were compared by using the Bland and Altman plot method and Lin's concordance correlation coefficient. A total of 319 sets of paired readings were collected. The mean (+/-SD) cardiac output was 2.62 +/- 1.04 L/min, and readings ranged from 0.79 to 5.73 L/min. The mean bias between the 2 sets of readings was -0.01 L/min, with limits of agreement (95% confidence intervals) of -0.34 to 0.31 L/min. This represents a 13% error. In five of six dogs, there was a high degree of concordance, or agreement, between the 2 methods, with coefficients >0.9. The USCOM provided reliable measurements of cardiac output over a wide range of values. Clinical trials are needed to validate the device in humans.