2 resultados para Anesthesia, Epidural
em University of Queensland eSpace - Australia
Resumo:
Seven captive male African wild dogs (Lycaon pictus) weighing 25-32 kg each, were anesthetized by i.m. injection via hand syringe with a combination of 1.5 mg/kg ketamine, 40 mu g/kg medetomidine, and 0.05 mg/kg atropine. Following endotracheal intubation, each animal was connected to a bain closed-circuit system that delivered 1.5% isoflurane and 2 L/min oxygen. Atipamezole (0.1 mg/kg i.v.; 0.1 mg/kg i.m.) was given at the end of each procedure (60 min following injection of medetomidine/ketamine/atropine). Time to sternal recumbency was 5-8 min. Times to standing after atipamezole administration were 8-20 min. This anesthetic regimen was repeated on three separate occasions (September 2000, February 2002, and October 2002) on all males to perform electroejaculation procedures. Each procedure was < 80 min from injection to standing. Dogs showed excellent muscle relaxation during the procedures. Arterial blood samples were collected at 10-min intervals for blood gases in one procedure (September 2000). Separate venous samples were taken from each dog during each procedure for hematology and biochemistry. These values were within the normal range for this species. Arterial hemoglobin oxygen saturation (SpO2) and heart rate (HR) were monitored continuously in addition to other anesthesia monitoring procedures (body temperature, respiratory rate [RR], capillary refill time, blink response, pupil position, deep pain perception reflex). All dogs maintained relatively stable SpO2 profiles during monitoring, with a mean (+/- SD) SpO2 of 92% +/- 5.4%. All other physiological variables (HR, RR, body temperature, blood pressure) were within normal limits. Following each procedure, normal behavior was noted in all dogs. All the dogs were reunited into the pack at completion of their anesthetic procedures. An injectable medetomidine-ketamine-atropine combination with maintenance by gaseous isoflurane and oxygen provides an inexpensive, reliable anesthetic for captive African wild dogs.
Resumo:
Caudal block results in a motor blockade that can reduce abdominal wall tension. This could interact with the balance between chest wall and lung recoil pressure and tension of the diaphragm, which determines the static resting volume of the lung. On this rationale, we hypothesised that caudal block causes an increase in functional residual capacity and ventilation distribution in anaesthetised children. Fifty-two healthy children (15-30 kg, 3-8 years of age) undergoing elective surgery with general anaesthesia and caudal block were studied and randomly allocated to two groups: caudal block or control. Following induction of anaesthesia, the first measurement was obtained in the supine position (baseline). All children were then turned to the left lateral position and patients in the caudal block group received a caudal block with bupivacaine. No intervention took place in the control group. After 15 nun in the supine position, the second assessment was performed. Functional residual capacity and parameters of ventilation distribution were calculated by a blinded reviewer. Functional residual capacity was similar at baseline in both groups. In the caudal block group, the capacity increased significantly (p < 0.0001) following caudal block, while in the control group, it remained unchanged. In both groups, parameters of ventilation distribution were consistent with the changes in functional residual capacity. Caudal block resulted in a significant increase in functional residual capacity and improvement in ventilation homogeneity in comparison with the control group. This indicates that caudal block might have a beneficial effect on gas exchange in anaesthetised, spontaneously breathing preschool-aged children with healthy lungs.