3 resultados para Anchoring heuristic
em University of Queensland eSpace - Australia
Resumo:
Two experiments investigated the extent of message processing of a persuasive communication proposed by either a numerical majority or minority. Both experiments crossed source status (majority versus minority) with message quality (strong versus weak arguments) to determine which source condition is associated with systematic processing. The first experiment showed a reliable difference between strong and weak messages, indicating systematic processing had occurred, for a minority irrespective of message direction (pro- versus counter-attitudinal), but not for a majority. The second experiment showed that message outcome moderates when a majority or a minority leads to systematic processing. When the message argued for a negative personal outcome, there was systematic processing only for the majority source; but when the message did not argue for a negative personal outcome, there was systematic processing only for the minority source. Thus one key moderator of whether a majority or minority source leads to message processing is whether the topic induces defensive processing motivated by self-interest. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE