5 resultados para Ammonium nitrate

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as (NH4NO3)-N-15-N-14 or (NH4NO3)-N-14-N-15 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N-2 fixation supplied 38% of the N in Casuarina. Biomass, N and N-15 contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as (NH4+)-N-15 than (NO3-)-N-15. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either N-15 source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of N-15 source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with (NH4+)-N-15 than with (NO3-)-N-15. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N-2-fixing to an N-2-fixing plant may reflect the very high N demand of N-2-fixing species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High concentrations of ammonium (up to 0.1 cmol/kg) have been observed below 1 m depth in a Vertosol soil near Warra in south-eastern Queensland. This study examined whether ammonium leaching could be responsible for the ammonium accumulation observed in the Warra soil. This was done by using quantity/intensity (Q/I) relationships to compare the ammonium retention capacity of the Warra soil with other similar soils throughout the region that did not contain elevated subsoil ammonium concentrations. Analysis of Q/I curves revealed that in the concentration range studied, the amount of ammonium retained on high affinity adsorption sites in all 3 soils was low, and the Warra soil was not significantly different from the other 2 soils. The ability of the soils to retain ammonium in the soil solution against leaching [i.e. their potential buffer capacity (PBC)] did differ between soils and was greatest at Warra. This indicates that at any one time the Warra soil holds more ammonium on the exchange complex and less in solution than the other soils examined. It was concluded that ammonium is no more likely to leach through the surface horizons of the Warra soil than the other soils examined. Indeed, the data indicated that the Warra soil probably has greater capacity to retain ammonium against leaching due to its greater PBC. Consequently, it is considered unlikely that leaching of ammonium has been a major contributor to the subsoil ammonium concentrations at Warra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusually high concentrations of exchangeable-NH4+ (up to 270 kg-N/ha) were observed in a Vertisol below 1 m in southeast Queensland. This study aimed to identify the source of this NH4+. Preliminary sampling of native vegetation and cropping areas had found that elevated NH4+was only present under cropped soil, indicating that clearing was linked to the NH4+formation. Mechanisms of NH4+formation that may have occurred in the subsoil after clearing were hypothesised to be a) mineralisation of organic-N; b) NO3- reduction to NH4+; and/or c) the release of fixed-NH4+. In addition it was proposed that nitrification was inhibited in the subsoil, and that this allowed any NH4+formed to accumulate over time. Incubation experiments to examine nitrification rates revealed that nitrification was undetectable, and appeared to be limited by a combination of subsoil acidity and low numbers of nitrifying organisms. Mineralisation studies also revealed that the mineralisation of organic-N was undetectable, and that mineralising organisms were limited by acidity. A small amount of nitrate ammonification could be observed with the aid of a 15N tracer if the soil was waterlogged. However, this NH4+was insufficient to account for the overall NH4+accumulation, and these waterlogged conditions were not observed in the field. Concentrations of fixed- NH4+ measured were also too low to have been responsible for the accumulation of exchangeable-NH4+. It was concluded that none of the proposed hypotheses of NH4+formation could account for the NH4+accumulation observed.