17 resultados para American Student Union.
em University of Queensland eSpace - Australia
Resumo:
This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.
Resumo:
Groundwater waves, that is, water table fluctuations, are a natural phenomenon in coastal aquifers. They represent an important part of the interaction between the ocean and aquifer and affect the mass exchange between them. This paper presents a new groundwater wave equation. Because it includes the effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers and high-frequency waves. Compared with the wave equation derived by Nielsen ed al. [1997], the present equation provides a closer representation of groundwater waves. In particular, it predicts high-frequency water table fluctuations as observed in the field. A validation of the new equation has been carried out by comparing the analytical solutions to it with predictions from direct simulations using the numerical model SUTRA. The effects of various physical parameters and their relative importance are also discussed.
Resumo:
The assumption in analytical solutions for flow from surface and buried point sources of an average water content, (θ) over bar, behind the wetting front is examined. Some recent work has shown that this assumption fitted some field data well. Here we calculated (θ) over bar using a steady state solution based on the work by Raats [1971] and an exponential dependence of the diffusivity upon the water content. This is compared with a constant value of (θ) over bar calculated from an assumption of a hydraulic conductivity at the wetting front of 1 mm day(-1) and the water content at saturation. This comparison was made for a wide range of soils. The constant (θ) over bar generally underestimated (θ) over bar at small wetted radii and overestimated (θ) over bar at large radii. The crossover point between under and overestimation changed with both soil properties and flow rate. The largest variance occurred for coarser texture soils at low-flow rates. At high-flow rates in finer-textured soils the use of a constant (θ) over bar results in underestimation of the time for the wetting front to reach a particular radius. The value of (θ) over bar is related to the time at which the wetting front reaches a given radius. In coarse-textured soils the use of a constant value of (θ) over bar can result in an error of the time when the wetting front reaches a particular radius, as large as 80% at low-flow rates and large radii.
Resumo:
Coral reefs generally exist within a relatively narrow band of temperatures, light, and seawater aragonite saturation states. The growth of coral reefs is minimal or nonexistent outside this envelope. Climate change, through its effect on ocean temperature, has already had an impact on the world's coral reefs, with almost 30% of corals having disappeared since the beginning of the 1980s. Abnormally warm temperatures cause corals to bleach ( lose their brown dinoflagellate symbionts) and, if elevated for long enough, to die. Increasing atmospheric CO2 is also potentially affecting coral reefs by lowering the aragonite saturation state of seawater, making carbonate ions less available for calcification. The synergistic interaction of elevated temperature and CO2 is likely to produce major changes to coral reefs over the next few decades and centuries. Known tolerances of corals to projected changes to sea temperatures indicate that corals are unlikely to remain abundant on reefs and could be rare by the middle of this century if the atmospheric CO2 concentration doubles or triples. The combination of changes to sea temperature and carbonate ion availability could trigger large- scale changes in the biodiversity and function of coral reefs. The ramifications of these changes for the hundred of millions of coral reef - dependent people and industries living in a high- CO2 world have yet to be properly defined. The weight of evidence suggests, however, that projected changes will cause major shifts in the prospects for industries and societies that depend on having healthy coral reefs along their coastlines.
Resumo:
This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.
Resumo:
[1] In this paper a detailed design, development and performances of a 5 GHz microstrip Yagi antenna, which uses a two-dimensional (2-D) electromagnetic band gap (EBG) structure in the ground plane, are presented. The results indicate that the use of the EBG structure improves the radiation pattern of the antenna. The cross polarization is suppressed by properly choosing the period and dimensions of EBGs. Also, the broadside gain is improved in comparison with the analogous antenna without the EBGs.