42 resultados para Alzheimer Disease.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported that a linkage disequilibrium (LD) block on chromosome 10q encompassing the gene encoding insulin-degrading enzyme (IDE) harbors sequence variants that associate with Alzheimer disease (AD). Evidence also indicated effects upon a number of quantitative indices of AD severity, including age-at-onset (AAO). Since linkage of this immediate region to AAO has been shown in both AD and Parkinson disease (PD), we have explored the possibility that polymorphism within this LD block might also influence PD. Utilizing single nucleotide polymorphisms that delineate common haplotypes from this region, we observed significant evidence of association with AAO in an Australian PD case-control sample. Analyses were complemented with AAO data from two independent Swedish AD case samples, for which previously reported findings were replicated. Results were consistent between AD and PD, suggesting the presence of equivalent detrimental and protective alleles. These data highlight a genomic region in the proximity of IDE that may contribute to AD and PD in a similar manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 +/- 1.9 years) and 14 matched controls (age: 71.4 +/- 0.9 years), each scanned twice (2.1 +/- 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional atrophy caused by neuronal loss is a characteristic of Alzheimer Disease (AD). Excitatory amino acid transporter-2 (EAAT2) is the major carrier responsible for clearing glutamate from the synaptic cleft in mammalian CNS. A localized attenuation of glutamate transport via reduced expression of functional forms of EAAT2 might contribute to regional excitotoxicity. The EAAT2 gene spans over 100 kb and encodes a 12-kb message. Several groups have identified alternative splice variants of EAAT2 in human brain tissue. These variants can affect transport by altering wild-type EAAT2 protein expression, localization, or transport efficiency. Alternative EAAT2 mRNA transcripts reportedly elicit a dominant-negative effect on glutamate uptake in cell culture. A 50% reduction in the expression in AD cortex of the truncated EAAT2 C-terminal isoform, EAAT2b, has been reported. We obtained cerebral cortex tissue, under informed written consent from the next of kin, from pathologically confirmed control, AD, and non-AD dementia cases. We aimed to determine the distribution and expression patterns of EAAT2 subtypes in susceptible and spared brain regions. We detected five alternate transcripts of EAAT2, two of which had not previously been reported. The relative contributions of novel variants, wild-type EAAT2, and previously discovered splice variants was investigated using Real-time PCR in AD, non-AD dementia, and age-matched control cortex. Our aim is to survey the relationship between these expression patterns and those of markers such as tau, GFAP, and b-amyloid, and to assess the correlation between variant-transporter expression and the level of cell loss.