73 resultados para Alloy-steels
em University of Queensland eSpace - Australia
Resumo:
In order to understand the metallurgical influences on Rock Bolt SCC, an evaluation has been carried out on carbon, carbon + manganese, alloy and microalloyed steels subjected to the conditions previously identified as producing laboratory SCC similar to that observed for rock bolts in service. The approach has been to use the LIST test (Linearly increasing stress test) for samples exposed to a dilute pH 2.1-sulphate solution, as per our prior studies. SCC was evaluated from the decrease in tensile strength, ductility and fractography as revealed by SEM observation. A range of SCC susceptibilities was observed. Ten of these steels showed SCC, however there was no SCC for one carbon, two carbon + manganese and two alloy steels.
Resumo:
Convergent beam Kikuchi diffraction was used to accurately determine the orientation relationships (ORs) between austenite and martensite, and between austenite and granular bainite in two Fe-Ni-Mn-C alloys. Both martensite and granular bainite have the same crystallographic characteristics with the OR: (111)(A)parallel to(101)(F), [1 (1) over bar0](A) 2.5degrees +/- 2degrees from [1 (1) over bar(1) over bar](B).
Resumo:
The effect of test temperature, which controls the stability of austenite, on the impact toughness of a low carbon Fe-Ni-Mn-C austenitic steel and 304 stainless steel, has been investigated. Under impact conditions, stress-induced martensitic transformation occurred, in a region near the fracture surface, at test temperatures below 80degreesC for the Fe-Ni-Mn-C steel and below -25degreesC for 304 stainless steel. The former shows significant transformation toughening and the highest impact toughness was obtained at 10degreesC, which corresponds to the maximum amount of martensite formed by stress-induced transformation above the Ms temperature. The stress-induced martensitic transformation contributes negatively to the impact toughness in the 304 stainless steel. Increasing the amount of stress-induced transformation to martensite, lowered the impact toughness. The experimental results can be well explained by the Antolovich theory through the analysis of metallography and fractography. The different effect of stress-induced transformation on the impact toughness in Fe-Ni-Mn-C steel and 304 stainless steel has been further understood by applying the crystallographic model for stress-induced martensitic transformation to these two steels. (C) 2002 Kluwer Academic Publishers.
Resumo:
The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by,magnesium alloys, and also of the environmental factors Of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service.
Resumo:
Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.
Resumo:
AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.
Resumo:
This paper reviews the current understanding of the mechanisms of stress corrosion cracking of pipeline steels. The similarities, the differences and the influencing factors are considered for the high pH stress corrosion cracking caused by a concentrated bicarbonate-carbonate solution, and for the low pH stress corrosion cracking due to a diluter solution. For high pH stress corrosion cracking, it is well accepted that the mechanism involves anodic dissolution for crack initiation and propagation. In contrast, it has been suggested that the low pH stress corrosion cracking is associated with the dissolution of the crack tip and sides, accompanied by the ingress of hydrogen into the pipeline steel. But the precise influence of hydrogen on the mechanism needs to be further studied. (C) 2003 Kluwer Academic Publishers.
Resumo:
The stress corrosion cracking (SCC) behavior and pre-exposure embrittlement of AZ31 magnesium alloy have been studied by slow strain rate tensile (SSRT) tests in this paper. It is showed that AZ31 sheet material is susceptible to SCC in distilled water, ASTM D1.387 solution, 0.01 M NaCl and 0.1 M NaCl solution. The AZ31 magnesium alloy also becomes embrittled if pre-exposed to 0.01 M NaCl solution prior to tensile testing. The degree of embrittlement increased with increasing the pre-exposure time, It is proposed that both the pre-exposure embrittlement and SCC were due to hydrogen which reduces the cohesive strength. i,e,. hydrogen embrittlement, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Different abrasive wear tests have been applied to materials with hardnesses ranging from 80 HV (aluminium) to 1700 HV (tungsten carbide). The tests were: dry sand rubber wheel (DSRbrW); a similar test using a steel wheel (DSStlW); a new combined impact-abrasion test (FIA). The DSRbrW results were as expected, giving generally decreasing wear with increasing hardness. White cast irons and tool steels containing coarse, hard carbide particles performed better than more homogeneous materials of comparable hardness. When normalized to load and distance, the DSStlW results for the homogeneous materials were similar to the DSRbrW results. The multi-phase materials performed poorly in the DSStlW test, with volume loss for high-speed steel (880 HV) higher than that of aluminium. Within this group, wear increased with increasing hardness. These unexpected results are explained in terms of (a) differential friction coefficients of wheel and specimen, (b) increased fracture of sand, and (c) introduction of microfracture wear mechanisms. The FIA combined impact-abrasion results lacked clear correlations with hardness. The span of relative wear rates was similar to that reported for materials in ball mills. White cast irons at maximum hardness performed fairly poorly and showed evidence of microfracture. (C) 1997 Elsevier Science S.A.
Resumo:
Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al-Zn-Mg-Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid-vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Mass balance calculations were performed to model the effect of solution treatment time on A356 and A357 alloy microstructures. Image analysis and electron probe microanalysis were used to characterise microstructures and confirm model predictions. In as-cast microstructures, up to 8 times more Mg is tied up in the pi-phase than in Mg2Si. The dissolution of pi is accompanied by a corresponding increase in the amount of beta-phase. This causes the rate of pi dissolution to be limited by the rate of beta formation. It is predicted that solution treatments of the order of tens of minutes at 540degreesC produce near-maximum T6 yield strengths, and that Mg contents in excess of 0.52 wt% have no advantage.