5 resultados para Alkylamides
em University of Queensland eSpace - Australia
Resumo:
Background: Echinacea is composed of three major groups of compounds that are thought to be responsible for stimulation of the immune system-the caffeic acid conjugates, alkylamides and polysaccharides. This study has focussed on the former two classes, as these are the constituents found in ethanolic liquid extracts. Objective: To investigate the absorption of these two groups of compounds using Caco-2 monolayers, which are a model of the intestinal epithelial barrier. Results: The caffeic acid conjugates (caftaric acid, echinacoside and cichoric acid) permeated poorly through the Caco-2 monolayers although one potential metabolite, cinnamic acid, diffused readily with an apparent permeability (P-app) of 1x10(-4) cm/s. Alkylamides were found to diffuse through Caco-2 monolayers with P-app ranging from 3x10(-6) to 3x10(-4) cm/s. This diversity in P-app for the different alkylamides correlates to structural variations, with saturation and N-terminal methylation contributing to decreases in P-app. The transport of the alkylamides is not affected by the presence of other constituents and the results for synthetic alkylamides were in line with those for the alkylamides in the echinacea preparation. Conclusion: Alkylamides but not caffeic acid conjugates are likely to cross the intestinal barrier.
Resumo:
Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,IOZ)-N-isobutyldodeca-2,4,8,10-tetracnamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Many studies have been done over the years to assess the effectiveness of Echinacea as an immunomodulator. We have assessed the potential bioavailability of alkylamides and caffeic acid conjugates using Caco-2 monolayers and compared it to their actual bioavailability in a Phase I clinical trial. The caffeic acid conjugates permeated poorly through the Caco-2 monolayers. Alkylamides were found to diffuse rapidly through Caco-2 monolayers. Differences in diffusion rates for each alkylamide correlated to structural variations, with saturation and N-terminal methylation contributing to decreases in diffusion rates. Alkylamide diffusion is not affected by the presence of other constituents and the results for a synthetic alkylamide were in line with those for alkylamides found in an ethanolic Echinacea preparation. We examined plasma from healthy volunteers for 12 hours after ingestion of Echinacea tablets manufactured from an ethanolic liquid extract. Caffeic acid conjugates could not be identified in any plasma sample at any time after tablet ingestion. Alkylamides were detected in plasma 20 minutes after tablet ingestion and for each alkylamide, pharmacokinetic profiles were devised. The data are consistent with the dosing regimen of one tablet three times daily and supports their usage as the primary markers for quality Echinacea preparations.
Resumo:
Echinacea preparations are widely used herbal medicines for the prevention and treatment of colds and minor infections. There is little evidence for the individual components in Echinacea that contribute to immune regulatory activity. Activity of an ethanolic Echinacea extract and several constituents, including cichoric acid, have been examined using three in vitro measures of macrophage immune function - NF-kappa B, TNF-alpha and nitric oxide (NO). In cultured macrophages, all components except the monoene alkylamide (AA1) decreased lipopolysaccharide (LPS) stimulated NF-kappa B levels. 0.2 mu g/ml cichoric acid and 2.0 mu g/mL Echinacea Premium Liquid (EPL) and EPL alkylamide fraction (EPL AA) were found to significantly decrease TNF-alpha production under LPS stimulated conditions in macrophages. In macrophages, only the alkylamide mixture isolated from the ethanolic Echinacea extract decreased LPS stimulated NO production. In this study, the mixture of alkylamides in the Echinacea ethanolic liquid extract did not respond in the same manner in the assays as the individual alkylamides investigated. While cichoric acid has been shown to affect NF-kappa B, TNF-alpha and NO levels, it is unlikely to be relevant in the Echinacea alterations of the immune response in vivo due to its nonbioavailability - i.e. no demonstrated absorption across the intestinal barrier and no detectable levels in plasma. These results demonstrate that Echinacea is an effective modulator of macrophage immune responses in vitro.