59 resultados para Air Pollutants
em University of Queensland eSpace - Australia
Resumo:
Objective: To examine the short-term health effects of air pollution on daily mortality in four Australian cities (Brisbane, Melbourne, Perth and Sydney), where more than 50% of Australians reside. Methods: The study used a similar protocol to APHEA2 (Air Pollution and Health: A European Approach) study and derived single-city and pooled estimates. Results: The results derived from the different approaches for the 1996-99 period showed consistent results for different statistical models used. There were significant effects on total mortality, (RR=1.0284 per 1 unit increase in nelphelometry [10(-4).m(-1)], RR=1.0011 per 1ppb increase in NO2), and on respiratory mortality (RR=1.0022 per 1ppb increase in O-2). No significant differences between cities were found, but the NO2 and particle effects may refer to the same impacts. Meta-analyses carried out for three cities yielded estimates for the increase in the daily total number of deaths of 0.2% (-0.8% to 1.2%) for a 10 mu g/m(3) increase in PM, concentration, and 0.9% (-0.7% to 2.5%) for a 10 mu g/m(3) increase in PM2.5 concentration. Conclusions: Air pollutants in Australian cities have significant effects on mortality.
Resumo:
Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.
Resumo:
There have been a number of developments in the need, design and use of passive air samplers (PAS) for persistent organic pollutants (POPs). This article is the first in a Special Issue of the journal to review these developments and some of the data arising from them. We explain the need and benefit of developing PAS for POPs, the different approaches that can be used, and highlight future developments and needs. (c) 2006 Elsevier Ltd. All rights reserved.
Passive air sampling of persistent organic pollutants: Theory, latest developments and applications.
Resumo:
OBJECTIVE: The goal of this study was to estimate the associations between outdoor air pollution and cardiovascular hospital admissions for the elderly. DESIGN: Associations were assessed using the case-crossover method for seven cities: Auckland and Christchurch, New Zealand; and Brisbane, Canberra, Melbourne, Perth, and Sydney Australia. Results were combined across cities using a random-effects meta-analysis and stratified for two adult age groups: 15-64 years and >= 65 years of age (elderly). Pollutants considered were nitrogen dioxide, carbon monoxide, daily measures of particulate matter (PM) and ozone. Where multiple pollutant associations were found, a matched case-control analysis was used to identify the most consistent association. RESULTS: In the elderly, all pollutants except 03 were significantly associated with five categories or cardiovascular disease admissions. No associations were found for arrhythmia and stroke. For a 0.9-ppm increase in CO, there were significant increases in elderly hospital admissions for total cardiovascular disease (2.2%), all cardiac disease (2.8%), cardiac failure (6.0%), ischemic heart disease (2.3%), and myocardial infarction (2.9%). There was some heterogeneity between cities, possibly due to differences in humidity and the percentage of elderly people. In matched analyses, CO had the most consistent association. CONCLUSIONS. The results suggest that air pollution arising from common emission sources for CO, NO2, and PM (e.g., motor vehicle exhausts) has significant associations with adult cardiovascular hospital admissions, especially in the elderly, at air pollution concentrations below normal health guidelines. RELEVANCE TO CLINICAL AND PROFESSIONAL PRACTICE: Elderly populations in Australia need to be protected from air pollution arising from outdoor sources to reduce cardiovascular disease.
Resumo:
Regular aerobic exercise is recommended by physicians to improve health and longevity. However, individuals exercising in urban regions are often in contact with air pollution, which includes particles and gases associated with respiratory disease and cancer. We describe the recent evidence on the cardiovascular effects of air pollution, and the implications of exercising in polluted environments, with a view to informing clinicians and other health professionals. There is now strong evidence that fine and ultra fine particulate matter present in air pollution increases cardiovascular morbidity and mortality. The main mechanisms of disease appear to be related to an increase in the pathogenic processes associated with atherosclerosis. People exercising in environments pervaded by air contaminants are probably at increased risk, due to an exercise-induced amplification in respiratory uptake, lung deposition and toxicity of inhaled pollutants. We make evidence-based recommendations for minimizing exposure to air-borne toxins while exercising, and suggest that this advice be passed on to patients where appropriate.
Resumo:
Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV < 20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m(3) d(-1). SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K-SV) when air-side resistance dominates and increase with K-SV when sampler-side resistance dominates.
Resumo:
Polyethylene-based passive air samplers (PSDs) were loaded with performance reference compounds (PRCs) and deployed in a wind tunnel to examine the effects of wind speed on sampler performance. PRCs could be loaded reproducibly into PSDs, with coefficients of variation only exceeding 20% for the more volatile compounds. When PSDs were exposed to low (0.5-1.5 m s(-1)) and high (3.5-4.5 m s(-1)) wind speeds, PRC loss rate constants generally increased with increasing wind speed and decreased with increasing sampler/air partition coefficients. PSD-based air concentrations calculated using PRC loss rate constants and sampler/air partition coefficients and air concentrations measured using active samplers compared closely. PRCs can be used to account for the effect of differences in wind speeds on sampler performance and measure air concentrations with reasonable accuracy. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.