3 resultados para Aggregate volatility risk
em University of Queensland eSpace - Australia
Resumo:
Excessive volatility of asset prices like that generated in the 'noise trader' model of De Long et al. is one factor that plausibly might contribute to an explanation of the equity premium. We extend the De Long et al. model to allow for privatization of publicly-owned assets and assess the welfare effects of such privatization in the presence of excess volatility arising from noise traders' mistaken beliefs.
Resumo:
Proposed by M. Stutzer (1996), canonical valuation is a new method for valuing derivative securities under the risk-neutral framework. It is non-parametric, simple to apply, and, unlike many alternative approaches, does not require any option data. Although canonical valuation has great potential, its applicability in realistic scenarios has not yet been widely tested. This article documents the ability of canonical valuation to price derivatives in a number of settings. In a constant-volatility world, canonical estimates of option prices struggle to match a Black-Scholes estimate based on historical volatility. However, in a more realistic stochastic-volatility setting, canonical valuation outperforms the Black-Scholes model. As the volatility generating process becomes further removed from the constant-volatility world, the relative performance edge of canonical valuation is more evident. In general, the results are encouraging that canonical valuation is a useful technique for valuing derivatives. (C) 2005 Wiley Periodicals, Inc.
Resumo:
The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.