63 resultados para Agent Oriented software engineering
em University of Queensland eSpace - Australia
Resumo:
This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering. The aims of the course are to provide a common understanding of the nature of software engineering for all Boeing Australia's engineering staff, and to ensure they understand the practices used throughout the company. The course is designed so that it can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The immediate feedback on the course indicates that it has been well received by the participants, but also indicates a need for more advanced courses in specific areas. The long-term feedback from participants is less positive, and the long-term feedback from the managers of the course participants indicates a need to expand on the coverage of the Boeing-specific processes and methods. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces various software engineering challenges, as well as privacy and usability concerns. In this paper, we present a conceptual framework and software infrastructure that together address known software engineering challenges, and enable further practical exploration of social and usability issues by facilitating the prototyping and fine-tuning of context-aware applications.
Resumo:
This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering for Boeing Australia. The aim of the course is to provide a common understanding for all Boeing Australia's engineering staff of the nature of software engineering and the practices used throughout Boeing Australia. It is meant as an introductory course that can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The course has been well-received by the participants, but the feedback from the course has indicated a need for more advanced courses in specific areas.
Resumo:
Established in 1986, ASWEC is the premier technical meeting for the Australian Software Engineering Community, and attracts a significant number of international participants. The conference is sponsored by both Engineers Australia and the Australian Computer Society. The major goal of the conference is to provide a forum for exchanging experience and new research results in software engineering. The technical program for ASWEC 2004 includes research papers from Australia and across the world. This year we received 79 submissions from 12 countries: 56 from Australia, 6 from New Zealand, 9 from Asia, 4 from Europe, and 4 from North America. All papers were fully refereed by three (two papers by only two) Program Committee members. We accepted 36 papers to be presented at the conference. We are grateful to all authors who contributed to ASWEC 2004. In addition to the technical papers, the conference program also includes two keynote speakers and one panel on Software Engineering accreditation. We are very pleased about being able to attract Philippe Kruchten, University of British Columbia, and Ian Hayes, The University of Queensland, as the keynote speakers for this conference.
Resumo:
Established in 1986, ASWEC is the premier technical meeting for the Australian software engineering community, and attracts a significant number of international participants. The major goal of the conference is to provide a forum for exchanging experience and new research results in software engineering. To increase the industry participation at ASWEC, we organized two separate paper tracks, which we have called Research Papers and Industry Experience Reports. These paper tracks had separate deadlines, separate program committees, separate review procedures, and separate proceedings. The Research Papers appear in these proceedings and the Industry Experience Reports will appear on a CD-Rom that will be distributed at the conference. The Research Papers track for ASWEC 2005 includes submissions from Australia and across the world. This year we received 79 submissions from 13 countries: 48 from Australia, 7 from New Zealand, 11 from Asia, 9 from Europe, and 2 each from North and South America. All papers were fully refereed by three Program Committee members. We accepted 34 papers to be presented at the conference. We are grateful to all authors who contributed to ASWEC.
Resumo:
The following topics are dealt with: Requirements engineering; components; design; formal specification analysis; education; model checking; human computer interaction; software design and architecture; formal methods and components; software maintenance; software process; formal methods and design; server-based applications; review and testing; measurement; documentation; management and knowledge-based approaches.
Resumo:
Despite decades of research, the takeup of formal methods for developing provably correct software in industry remains slow. One reason for this is the high cost of proof construction, an activity that, due to the complexity of the required proofs, is typically carried out using interactive theorem provers. In this paper we propose an agent-oriented architecture for interactive theorem proving with the aim of reducing the user interactions (and thus the cost) of constructing software verification proofs. We describe a prototype implementation of our architecture and discuss its application to a small, but non-trivial case study.
Resumo:
We discuss how integrity consistency constraints between different UML models can be precisely defined at a language level. In doing so, we introduce a formal object-oriented metamodeling approach. In the approach, integrity consistency constraints between UML models are defined in terms of invariants of the UML model elements used to define the models at the language-level. Adopting a formal approach, constraints are formally defined using Object-Z. We demonstrate how integrity consistency constraints for UML models can be precisely defined at the language-level and once completed, the formal description of the consistency constraints will be a precise reference of checking consistency of UML models as well as for tool development.
Resumo:
Object-orientation supports software reuse via features such as abstraction, information hiding, polymorphism, inheritance and redefinition. However, while libraries of classes do exist, one of the challenges that still remains is to locate suitable classes and adapt them to meet the specific requirements of the software developer. Traditional approaches to library retrieval are text-based; it is therefore difficult for the developer to express their requirements in a precise and unambiguous manner. A more promising approach is specification-based retrieval, where library component interfaces and requirements are expressed using a formal specification language. In this case retrieval is based on matching formal specifications. In this paper we describe how existing approaches to specification matching can be extended to handle object-oriented components.
Resumo:
Software Configuration Management is the discipline of managing large collections of software development artefacts from which software products are built. Software configuration management tools typically deal with artefacts at fine levels of granularity - such as individual source code files - and assist with coordination of changes to such artefacts. This paper describes a lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure. The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded software systems.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.