36 resultados para Ag atoms

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the submicron scale. These include controlled and coherent splitting of the wave function as well as cooling, trapping, and guiding. In particular, we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse and compare various aspects of the performance of atomic beam splitters fur two- and three-level atoms, both of which use bichromatic optical fields. We calculate the extent to which spontaneous emission degrades the sharpness of the splitting, and how it might degrade the visibility of an idealised atom interferometer which includes either beam splitting mechanism. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper Meyer and Yeoman [Phys. Rev. Lett. 79, 2650 (1997)] have shown that the resonance fluorescence from two atoms placed in a cavity and driven by an incoherent field can produce an interference pattern with a dark center. We study the fluorescence from two coherently driven atoms in free space and show that this system can also produce an interference pattern with a dark center. This happens when the atoms are in nonequivalent positions in the driving: field, i.e., the atoms experience different intensities and phases of the driving field. We discuss the role of the interatomic interactions in this process and find that the interference pattern with a dark center results from the participation of the antisymmetric state in the dynamics of the driven two-atom system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the resonance fluorescence from two interacting atoms driven by a squeezed vacuum field and show that this system produces an interference pattern with a dark center. We discuss the role of the interatomic interactions in this process and find that the interference pattern results from an unequal population of the symmetric and antisymmetric states of the two-atom system. We also identify intrinsically nonclassical effects versus classical squeezed field effects, (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in the (x,y) plant for charge 2 are simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of global chaos. [S1063-651X(99)03903-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the stationary state of the system of two non-identical two-level atoms driven by a finite-bandwidth two-mode squeezed vacuum. It is well known that two identical two-level atoms driven by a broadband squeezed vacuum may decay to a pure state, called the pure two-atom squeezed state, and that the presence of the antisymmetric state can change its purity. Here, we show that for small interatomic separations the stationary state of two non-identical atoms is not sensitive to the presence of the antisymmetric state and is the pure two-atom squeezed state. This effect is a consequence of the fact that in the system of two non-identical atoms the antisymmetric state is no longer the trapping state. We also calculate the squeezing properties of the emitted field and find that the squeezing spectrum of the output field may exhibit larger squeezing than that in the input squeezed vacuum. Moreover, we show that squeezing in the total field attains the optimum value which can ever be achieved in the field emitted by two atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag-3 was produced by pulsed-nozzle laser vaporisation and jet-cooled in a Ne supersonic expansion. One-color resonant two-photon ionisation (R2PI) spectra of the (B) over tilde(2) E '' <-- (X) over tilde(2) E' transition of Ag-3 were separately measured for all four isotopic combinations. Long vibrational progressions are observed, involving clearly resolved bands at low energy, merging into a dense but resolvable spectrum up to 1000 cm(-1) above the origin. Both the ground (X) over tilde(2) E' and excited (B) over tilde(2) E '' states of Ag-3 are susceptible to Jahn-Teller distortion along the degenerate e' bending coordinate. The Jahn-Teller analysis includes both linear and quadratic terms, simultaneously with the spin-orbit coupling. Following extensive parameter fitting, the absorption spectrum is calculated, and bands assigned. The spin-orbit splitting is quenched below the localization energy, but becomes observable approximate to 300 cm(-1) above the origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations are used to study energy and momentum transfer of low-energy Ar atoms scattered from the Ni(001) surface. The investigation concentrates on the dependence of these processes on incident energy, angles of incidence and surface temperature. Energy transfer exhibits a strong dependence on the surface temperature, at incident energies below 500 meV, and incident angles close to specular incidence. Above 500 meV, the surface temperature dependence vanishes, and a limiting value in the amount of energy transferred to the surface is attained. Momentum exchange is investigated in terms of tangential and normal components. Both components exhibit a weak surface temperature dependence, but they have opposite behaviours at all incidence angles. In each component, momentum can be lost or gained following the interaction with the surface. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously observed that the intrinsically weak variant GC donor sites, in order to be recognized by the U2-type spliceosome, possess strong consensus sequences maximized for base pair formation with U1 and U5/U6 snRNAs. However, variability in signal strength is a fundamental mechanism for splice site selection in alternative splicing. Here we report human alternative GC-AG introns (for the first time from any species), and show that while constitutive GC-AG introns do possess strong signals at their donor sites, a large subset of alternative GC-AG introns possess weak consensus sequences at their donor sites. Surprisingly, this subset of alternative isoforms shows strong consensus at acceptor exon positions 1 and 2. The improved consensus at the acceptor exon can facilitate a strong interaction with U5 snRNA, which tethers the two exons for ligation during the second step of splicing. Further, these isoforms nearly always possess alternative acceptor sites and always possess alternative acceptor sites and exhibit particularly weak polypyrimidine tracts characteristic of AG-dependent introns. The acceptor exon nucleotides are part of the consensus required for the U2AF(35)-mediated recognition of AG in such introns. Such improved consensus at acceptor exons is not found in either normal or alternative GT-AG introns having weak donor sites or weak polypyrimidine,tracts. The changes probably reflect mechanisms that allow GC-AG alternative intron isoforms to cope with two conflicting requirements, namely an apparent need for differential splice strength to direct the choice of alternative sites and a need for improved donor signals to compensate for the central mismatch base pair (C-A) in the RNA duplex of U1 snRNA and the pre-mRNA. The other important findings include (i) one in every twenty alternative introns is a GC-AG intron, and (ii) three of every five observed GC-AG introns are alternative isoforms.