9 resultados para African philology.
em University of Queensland eSpace - Australia
Resumo:
The extensive antigenic variation phenomena African trypanosomes display in their mammalian host have hampered efforts to develop effective vaccines against trypanosomiasis. Human disease management aims largely to treat infected hosts by chemotherapy, whereas control of animal diseases relies on reducing tsetse populations as well as on drug therapy. The control strategies for animal diseases are carried out and financed by livestock owners, who have an obvious economic incentive. Sustaining largely insecticide-based control at a local level and relying on drugs for treatment of infected hosts for a disease for which there is no evidence of acquired immunity could prove extremely costly in the long run. It is more likely that a combination of several methods in an integrated, phased and area-wide approach would be more effective in controlling these diseases and subsequently improving agricultural output. New approaches that are environmentally acceptable, efficacious and affordable are clearly desirable for control of various medically and agriculturally important insects including tsetse. Here, Serap Aksoy and colleagues discuss molecular genetic approaches to modulate tsetse vector competence.
Resumo:
The scale insect genus Calycicoccus Brain has a single described species, C. merwei Brain, which is endemic to southeastern South Africa. Females of C. merwei induce small, mostly conical galls on the foliage of their host tree, Apodytes dimidiata E. Meyer ex Arn. (Icacinaceae), which has a wider, mostly coastal distribution, than that currently known for the scale insect. Calycicoccus has been placed in the family Eriococcidae and may be related to the South American genus Aculeococcus Lepage. No other native eriococcid species have been described so far in South Africa, although the family is diverse in other Gondwanan regions. This paper summarizes the biology of C. merwei, redescribes the adult female, describes the adult male, the second-instar female and the first-instar nymphs for the first time, and reconsiders the phylogenetic relationships of the genus. The adult female is shown to have unusual abdominal segmentation, in that segment I is present both dorsally and ventrally, but a segment is absent ventrally on the middle abdomen. First-instar nymphs are sexually dimorphic; males have a larger and relatively narrower body, larger mouthparts, longer antennae and legs, and more thoracic dorsal setae compared with females. Molecular data from nuclear small-subunit ribosomal DNA (18S) and elongation factor 1 alpha (EF-1a) show C. merwei to have no close relatives among the Eriococcidae sampled to date. Instead, the Calycicoccus lineage is part of a polytomy near the base of the Eriococcidae. Molecular dating of the node suggests that the Calycicoccus lineage diverged from other eriococcids more than 100 Mya. These data support the placement of Calycicoccus as the only genus in the subfamily Calycicoccinae Brain.
Resumo:
The South African style SAG (RoM) mills operate in a window that is almost exclusive from the operation of the Australian and North American mills that have been used for the development of SAG mill models. Combining good quality, test data from the RoM mills is extending and improving these models, and assisting in a practical manner in improving our understanding of SAG/AG milling. Data from high mill loads, both in absolute filling and ball loading, have been used to extend and improve the JK SAG mill model. This improved understanding has been successfully applied to increasing the throughput of a mill by 8%. Data is presented on relationships between power and load for high mill loading. Slurry pooling is common in closed-circuit RoM mills, and the detrimental effect of this has been dramatically demonstrated at ALCOA with a mill throughput increase of over 20%. Techniques for calculating the effects of slurry pooling have been developed and a new pulp lifter system designed to give optimal slurry discharge. The influence of mill speed in shifting the product size distribution has also been measured. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14415 bp), S. japonicum (Anhui strain, China; 14085 bp) and S. mekongi (Khong Island, Laos; 14072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 an), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79 for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Chromosome 9p21, a locus comprising the tumor suppressor genes (TSG) p16(INK4) (a) and p14(ARF) , is a common region of loss of heterozygosity (LOH) in hepatocellular carcinoma (HCC). p14(ARF) shares exon 2 with p16 in a different reading frame. p14 binds to MDM2 resulting in a stabilization of functional p53 . This study examined the roles of p14, p16 and p53 in hepatocarcinogenesis, in 37 Australian and 24 South African patients. LOH at 9p21 and 17p13.1, p14 and p16 mutation analysis, p14 and p16 promoter methylation and p14, p16 and p53 protein expression was examined. LOH at 9p21 was detected more frequently in South African HCC (P = 0.04). Comparable rates of p53 LOH were observed in Australian and South African HCC (10/22, 45%vs 13/22, 59%, respectively). Hypermethylation of the p14 promoter was more prevalent in Australian HCC than in South African HCC (17/37, 46%vs 7/24, 29%, respectively). In Australian HCC the prevalence of p14 methylation increased with age (P = 0.03). p16 promoter methylation was observed in 12/37 (32%) and 6/24 (25%) in Australian and South African HCC, respectively. Loss of p16 protein expression was detected in 14/36 Australian HCC whereas p53 protein expression was detected in 9/36. Significantly, a reciprocal relationship between 9p21 LOH and p14 promoter hypermethylation was observed (P less than or equal to0.05 ). No significant association between p14 and p53 was seen in this study. The reciprocal relationship identified indicates different pathways of tumorigenesis and likely reflects different etiologies of HCC in the two countries. (C) 2002 Blackwell Science Asia Pty Ltd.