51 resultados para Advanced Planning and Scheduling systems
em University of Queensland eSpace - Australia
Resumo:
There is growing interest in comparing patterns of social and health service development in advanced Asian economies. Most publications concentrate broadly on a range of core social services such as education, housing, social security and health care. In terms of those solely focused on health, most discuss arrangements in specific countries and territories. Some take a comparative approach, but are focused on presentation and discussion of expenditure, resourcing and service utilization data. This article extends the comparative analysis of advanced Asian health systems, considering the cases of Japan, South Korea, Taiwan, Hong Kong and Singapore. The article provides basic background information, and delves into common concerns among the world's health systems today including primary care organization, rationing and cost containment, service quality, and system integration. Conclusions include that problems exist in 'classifying' the five diverse systems; that the systems face common pressures; and that there are considerable opportunities to enhance primary care, service quality and system integration. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A framework for and overview of the key elements of language planning is presented covering status planning, corpus planning, language-in-education planning, prestige planning and critical approaches to language planning. Within each of these areas, key articles outlining important recent directions are discussed indicating the field’s new found sense of vitality.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
The finite element method is used to simulate coupled problems, which describe the related physical and chemical processes of ore body formation and mineralization, in geological and geochemical systems. The main purpose of this paper is to illustrate some simulation results for different types of modelling problems in pore-fluid saturated rock masses. The aims of the simulation results presented in this paper are: (1) getting a better understanding of the processes and mechanisms of ore body formation and mineralization in the upper crust of the Earth; (2) demonstrating the usefulness and applicability of the finite element method in dealing with a wide range of coupled problems in geological and geochemical systems; (3) qualitatively establishing a set of showcase problems, against which any numerical method and computer package can be reasonably validated. (C) 2002 Published by Elsevier Science B.V.