31 resultados para Adaptive pulsed
em University of Queensland eSpace - Australia
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
From an experiment in which corals are transplanted between two depths on a Panamanian coral reef, Baker1 infers that bleaching may sometimes help reef corals to survive environmental change. Although Baker's results hint at further mechanisms by which reef-building corals may acclimatize to changing light conditions, we do not consider that the evidence supports his inference.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, rapidly switching magnetic gradient fields that, in extreme cases, may be able to elicit nerve stimulation. This paper presents theoretical investigations into the spatial distribution of induced current inside human tissues caused by pulsed z-gradient fields. A variety of gradient waveforms have been studied. The simulations are based on a new, high-definition, finite-difference time-domain method and a realistic inhomogeneous 10-mm resolution human body model with appropriate tissue parameters. it was found that the eddy current densities are affected not only by the pulse sequences but by many parameters such as the position of the body inside the gradient set, the local biological material properties and the geometry of the body. The discussion contains a comparison of these results with previous results found in the literature. This study and the new methods presented herein will help to further investigate the biological effects caused by the switched gradient fields in a MRI scan. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
It is shown that coherent quantum simultons (simultaneous solitary waves at two different frequencies) can undergo quadrature-phase squeezing as they propagate through a dispersive chi((2)) waveguide. This requires a treatment of the coupled quantized fields including a quantized depleted pump field. A technique involving nonlinear stochastic parabolic partial differential equations using a nondiagonal coherent state representation in combination with an exact Wigner representation on a reduced phase space is outlined. We explicitly demonstrate that group-velocity matched chi((2)) waveguides which exhibit collinear propagation can produce quadrature-phase squeezed simultons. Quasi-phase-matched KTP waveguides, even with their large group-velocity mismatch between fundamental and second harmonic at 425 nm, can produce 3 dB squeezed bright pulses at 850 nm in the large phase-mismatch regime. This can be improved to more than 6 dB by using group-velocity matched waveguides.
Resumo:
We have previously shown that H-1 pulsed-field-gradient (PFG) NMR spectroscopy provides a facile method for monitoring protein self-association and can be used, albeit with some caveats, to measure the apparent molecular mass of the diffusant [Dingley et al. (1995) J. Biomol. NMR, 6, 321-328]. In this paper we show that, for N-15-labelled proteins, selection of H-1-N-15 multiple-quantum (MQ) coherences in PFG diffusion experiments provides several advantages over monitoring H-1 single-quantum (SQ) magnetization. First, the use of a gradient-selected MQ filter provides a convenient means of suppressing resonances from both the solvent and unlabelled solutes. Second, H-1-N-15 zero-quantum coherence dephases more rapidly than H-1 SQ coherence under the influence of a PFG. This allows the diffusion coefficients of larger proteins to be measured more readily. Alternatively, the gradient length and/or the diffusion delay may be decreased, thereby reducing signal losses from relaxation. In order to extend the size of macromolecules to which these experiments can be applied, we have developed a new MQ PFG diffusion experiment in which the magnetization is stored as longitudinal two-spin order for most of the diffusion period, thus minimizing sensitivity losses due to transverse relaxation and J-coupling evolution.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.