3 resultados para Actynoptychus undulatus
em University of Queensland eSpace - Australia
Resumo:
The genera Lobatocreadium, Pseudocreadium, Hypocreadium and Dermadena are redefined and host lists given. Provisional keys to species of Lobatocreadium, Hypocreadium and Dermadena are presented. The following species are described from (1) the Great Barrier Reef: Lobatocreadium exiguum from Balistapus undulatus and Sufflamen bursa; Hypocreadium cavum n. sp. from Abalistes stellatus (type-host) and Cantheschenia grandisquamis; H. grandisquamis n. sp. from Cantheschenia grandisquamis; Dermadena spatiosa n. sp, from Cantheschenia grandisquamis; and (2) southwestern Australia: D. stirlingi n. sp. from Meeschenia hippocrepis. The following new combinations are made: Lobatocreadium vitellosum (Ozaki, 1936) n. comb. (originally Leptocreadium); Hypocrendium balistes (Nagaty, 1942) n. comb. (originally Pseudocreadium); H. biminensis (Sogandares-Bernal, 1959) n. comb. (originally Pseudocreadium); H. indicum (Madhavi, 1972) n. comb. (originally Pseudocreadium); and H. galapagoensis (Manter, 1945) n. comb. (originally Pseudocreadium). Several nominal species of Pseudocreadium and Hypocreadium are considered incertae sedis.
Resumo:
Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.
Resumo:
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (lambda(max)) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (lambda(cut)) of their respective C-, Y- and R-type oil droplets can be predicted from the lambda(max) of the ultraviolet- (UVS)/violet- ( VS) sensitive visual pigment.