40 resultados para Actin Cytoskeleton
em University of Queensland eSpace - Australia
Resumo:
Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximate to 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximate to 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
Classical cadherin adhesion molecules are fundamental determinants of tissue organization in both health and disease. Recent advances in understanding the molecular and cellular basis of cadherin function have revealed that these adhesion molecules serve as molecular couplers, linking cell surface adhesion and recognition to both the actin cytoskeleton and cell signalling pathways. We will review some of these developments. to provide an overview of progress in this rapidly-developing area of cell and developmental biology.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.
Resumo:
Classic cadherins are adhesion-activated cell signaling receptors. In particular, homophilic cadherin ligation can directly activate Rho family GTPases and phosphatidylinositol 3-kinase (PI3-kinase), signaling molecules with the capacity to support the morphogenetic effects of these adhesion molecules during development and disease. However, the molecular basis for cadherin signaling has not been elucidated, nor is its precise contribution to cadherin function yet understood. One attractive hypothesis is that cadherin-activated signaling participates in stabilizing adhesive contacts ( Yap, A. S., and Kovacs, E. M. ( 2003) J. Cell Biol. 160, 11-16). We now report that minimal mutation of the cadherin cytoplasmic tail to uncouple binding of p120-ctn ablated the ability of E-cadherin to activate Rac. This was accompanied by profound defects in the capacity of cells to establish stable adhesive contacts, defects that were rescued by sustained Rac signaling. These data provide direct evidence for a role of cadherin-activated Rac signaling in contact formation and adhesive stabilization. In contrast, cadherin-activated PI3-kinase signaling was not affected by loss of p120-ctn binding. The molecular requirements for E-cadherin to activate Rac signaling thus appear distinct from those that stimulate PI3-kinase, and we postulate that p120-ctn may play a central role in the E-cadherin-Rac signaling pathway.
Resumo:
Classical cadherin adhesion molecules are key determinants of cell recognition and tissue morphogenesis, with diverse effects on cell behavior. Recent developments indicate that classical cadherins are adhesion-activated signaling receptors. In particular, early-immediate Rac signaling is emerging as a mechanism to coordinate cadherin-actin integration at the plasma membrane.
Resumo:
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.
Resumo:
Polydnaviruses are endogenous particles that are crucial for the survival of endoparasitoid wasps, providing active suppression of the immune function of the lepidopteran host in which wasp larvae develop. The Cotesia rubecula bracovirus (CrBV) is unique in that only four gene products are detected in larval host (Pieris rapae) tissues and expression of CrBV genes is transient, occurring between 4 and 12 h post-parasitization. Two of the four genes, CrV1 and CrV3, have been characterized. CrV1 is a secreted glycoprotein that has been implicated in depolymerization of the actin cytoskeleton of host haemocytes, leading to haemocyte inactivation; CrV3 is a multimeric C-type lectin that shares homology with insect immune lectins. Here, a third CrBV-specific gene is described, CrV2, which is expressed in larval P. rapae tissues. CrV2, which is transcribed in haemocytes and fat body cells, has an ORF of 963 bp that produces a glycoprotein of approximately 40 kDa. CrV2 is secreted into haemolymph and appears to be internalized by host haemocytes. CrV2 has a coiled-coil region predicted at its C-terminus, which may be involved in the formation of putative CrV2 trimers that are detected in haemolymph of parasitized host larvae.
Resumo:
Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Resumo:
Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension. This suggested that Arp2/3 might generate the protrusive forces necessary for cell surfaces to extend upon one another during contact assembly. We tested this hypothesis in mammalian cells by exogenously expressing the CA region of N-WASP. This fragment, which potently inhibits Arp2/3-mediated actin assembly in vitro, also effectively reduced actin assembly at cadherin adhesive contacts. Blocking Arp2/3 activity by this strategy profoundly reduced the ability of cells to extend cadherin adhesive contacts but did not affect cell adhesiveness. These findings demonstrate that Arp2/3 activity is necessary for cells to efficiently extend and assemble cadherin-based adhesive contacts.
Resumo:
Small GTPases of the Ras superfamily play critical roles in epithelial biogenesis. Many key morphogenetic functions occur when small GTPases act at epithelial junctions, where they mediate an increasingly complex interplay between cell-cell adhesion molecules and fundamental cellular processes, such as cytoskeletal activity, polarity and trafficking. Important recent advances in this field include the role of additional members of the Ras superfamily in cell-cell contact stability and the capacity for polarity determinants to regulate small GTPase signalling. Interestingly, small GTPases may participate in the cross-talk between different adhesive receptors: in tissues classical cadherins can selectively regulate other junctions through cell signalling rather than through a global influence on cell-cell cohesion.
Resumo:
The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation. Conversely, the Rho proteins can have beneficial effects on the vasculature, including the promotion of endothelial repair and the maintenance of SMC differentiation. Further identification of the mechanisms by which these proteins and their effectors act in the vasculature should lead to therapies that specifically target only the adverse effects of Rho signalling. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof 1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof 1 SH3 domain and counteracting its inhibitory effect.