5 resultados para Acritarchs

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the initial part of a comprehensive bipartite monograph of palynomorphs (viz., acritarchs, prasinophyte phycomata, and chitinozoans) that are represented profusely in marine lower Palaeozoic strata of the Canning Basin, Western Australia. The prime aim is to establish a palynologically based zonal scheme for the Ordovician sequence as represented in five cored boreholes drilled through the Lower to Middle Ordovician strata of the central-northeastern Canning Basin. These strata embrace the Oepikodus communis through Phragmodus-Plectodina conodont zonal interval and comprise (in ascending order) the Willara, Goldwyer, and Nita formations, of inferred early Arenig to Llanvirn age. All three formations contain moderately diverse and variably preserved palynomorphs. The palynomorph taxa, detailed systematically in the current Part One of this monograph, comprise 66 species of acritarchs and six of prasinophytes. Of these, two species of prasinophytes and 11 of acritarchs are newly established: Cymatiosphaera meandrica and Pterospermella franciniae; Aremoricanium hyalinum, A. solaris, Baltisphaeridium tenuicomatum, Gorgonisphaeridium crebrum, Lophosphaeridium aequalium, L. aspersum, Micrhystridium infrequens, Pylantios hadrus, Sertulidium amplexum, Striatotheca indistincta, and Tribulidium globosum. Pylantios (typified by P. hadrus), Sertulidium (typified by S. amplexum), and Tribulidium (typified by T globosum); are defined as new acritarch genera. Three new combinations are instituted: Baltisphaeridium pugiatum (PLAYFORD & MARTIN 1984), Polygonium canningianum (COMRAZ & PENIGUEL 1972), and Sacculidium furtivum (PLAYFORD & MARTIN 1984); and Ammonidium macilentum PLAYFORD & MARTIN 1984 and Sacculidium furtivum (PLAYFORD & MARTIN 1984) are emended. An appreciable number of palynomorph species are not formally named owing to lack of sufficient or adequately preserved specimens; others are compared but not positively identified with previously instituted species. The ensuing Part Two of this study will complete the systematic-descriptive documentation, i.e., chitinozoans, and evaluate the Canning Basin palynoflora in terms of its chronological and stratigraphic-correlative significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iberian Pyrite Belt (IPB), which forms part of the Variscan orogenic massif, is renowned for the magnitude and extent of its massive sulfide mineralization. The stratigraphic record of the IPB consists of Upper Palaeozoic sedimentary and igneous rocks. In ascending order, these comprise the thick Phyllite-Quartzite Group attributed to the Middle and Upper Devonian and characterized by shales and quartzites with conglomeratic and carbonate intercalations towards the top; the appreciably thinner Volcano-Sedimentary Complex, a heterogeneous uppermost Devonian-Mississippian unit embodying diverse volcanic, subvolcanic, and sedimentary rocks that host the massive sulfide deposits; and the shaly and sandy, turbiditic Culm Group (Carboniferous). This entire succession was folded and faulted during the Asturian phase of the Variscan Orogeny that gave rise to a thin-skinned type structure. The present study constitutes a detailed blostratigraphic investigation of palynologically productive samples representative of the Phyllite-Quartzite Group and the basal (anoxic) portion of the Volcano-Sedimentary Complex. These were collected from surface and mine exposures variously located in the Spanish part of the IPB; out of 282 samples processed, 117 proved to be productive palynologically. The aim of this project is to provide comprehensive palynostratigraphic data applicable to precise dating and correlation of the IPB's stratigraphic succession (i.e., of the two sampled lithostratigraphic units), which has hitherto been investigated biostratigraphically on a relatively localized basis. The results are incorporated in two successive parts. The first of these, i. e., the present paper, focuses on the systematic analysis of the terrestrial (miospore) component of the palynological assemblages. The second part, devoted to the marine, organic-walled microphytoplankton (acritarchs and prasinophytes), will evaluate the stratigraphic significance of the IPB palynofloras and their application to elucidating the geological history of the region. In the systematic-descriptive section, which occupies the bulk of this paper, 55 species of trilete miospores are described and are allocated among 34 genera, two of which (Cristicavatispora and Epigruspora) are newly instituted herein. The majority of the species are either positively identifiable or closely affiliable with previously named species. The nine newly established species are as follows: Camptozonotriletes confertus, Indotriradites diversispinosus, Cristicavatispora dispersa (type species), Epigruspora regularis (type species), Ancyrospora? implicata, Endosporites tuberosus, Rugospora explicata, Spelaeotriletes plicatus, and Teichertospora iberica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Devonian rocks of the Iberian Pyrite Belt (IPB) in southwest Spain, comprising the Phyllite-Quartzite Group (PQ) and the lower part of the overlying Volcano-Sedimentary Complex (VSC), contain a diversity of terrestrial and marine palynomorphs (miospores and organic-walled microphytoplankton, respectively), which constitute the basis of this biostratigraphically oriented research project. Part One of the report has previously detailed the miospore content of the constituent 117 palyniferous samples. In the present paper (i.e., the concluding Part Two), the organic-walled microphytoplankton (acritarchs and prasinophyte phycomata) are systematically described and illustrated, and their occurrence in the study material is fully documented. The acritarchs are represented by 23 species (including one species complex) allocated among 14 genera (one of which, Dupliciradiatum, is newly established), together with a very rare and novel category (informally termed Gen. nov. A). The following new acritarch species are formally instituted: Dupliciradiatum crassum (type species), D. tenue, Histopalla languida, and Winwaloeusia repagulata. Five genera allied with the prasinophycean algae are identified; these accommodate a total of 15 species of which two - Cymatiosphaera tenuimembrana and Maranhites multioculus - are formally proposed as new. In addition, representatives of the prasinophyte genera Leiosphaeridia and Tasmanites are recorded but are not discriminated at species level. The microphytoplankton suite is clearly consonant, from previously published occurrences in other regions, with a Late Devonian dating. However, most of the species are known to be relatively long ranging through (and in some cases beyond) that epoch and hence are not amenable to detailed biozonal subdivision of the IPB succession. Moreover, the distribution of the species therein tends to be erratic in comparison with the more consistently occurring miospores, possibly due to stress factors induced by fluctuating conditions in the IPBs Upper Devonian marine environment. By contrast, the land-derived (miospore) assemblages are readily applicable in a blostratigraphic context: they can be correlated precisely with the Devonian miospore biozonation scheme for Western Europe. In those terms, the sampled PQ strata are assignable to the Diducites versabilis-Grandispora cornuta (VCo) Biozone of late Famennian age; while the samples from the anoxic sequence at the base of the VSC belong to the Retispora lepidophyta-Verrucosisporites nitidus (LN) Biozone (latest Famennian = latest Devonian). The biochronostratigraphic data, in conjunction with the findings from earlier IPB studies, imply two appreciable palynostratigraphic breaks within the PQ. These are representative, respectively, of the lower Frasnian-middle Famennian interval and of part of the Strunian/upper Famennian. Speculation currently remains as to whether the inferred gaps are more apparent than real; i.e., whether one or both represent actual hiatuses in IPB sedimentation or are simply a manifestation of hitherto unsampled and/or non-palyniferous PQ strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This second and concluding part of a comprehensive palynological study of the Lower to Middle Ordovician succession of the central-northeastern Canning Basin completes the systematic documentation of the palynomorphs, i.e., chitinozoans, and formulates a palynostratigraphic zonation scheme embracing all three constituent formations of this investigation, viz., the Willara, Goldwyer, and Nita formations. A total of 21 species of chitinozoans (five genera), detailed systematically herein, are identified. Although chitinozoan recovery per sample proved variable, the following species occur fairly persistently in the productive samples: Belonechitina micracantha, Conochitina subcylindrica, C. poumoti, C. langei, Calpichitina windjana, and Rhabdochitina magna. Five, stratigraphically successive acritarch/prasinophyte assemblage zones, ranging in age from early Arenig through late Llanvirn, are proposed as follows (ascending order): Athabascaella rossii Assemblage Zone (corresponding to the lower Willara Formation; and dated as early-mid Arenig); Comasphaeridium setaricum Assemblage Zone (upper Willara and lowermost Goldwyer; late Arenig-earliest Llanvirn); Sacculidium aduncum Assemblage Zone (lower Goldwyer; early Llanvirn); Aremorica-nium solaris Assemblage Zone (middle and lower upper Goldwyer; mid Llanvirn); and Dactylofusa striatogranulata Assemblage Zone (upper Goldwyer and lower Nita; late Llanvirn). Four chitinozoan assemblage zones, stratigraphically coinciding (within the limits of sampling) with the acritarch/prasinophyte zones, comprise (in ascending order): Lagenochitina combazi Assemblage Zone (equivalent to the A. rossii and L. heterorhabda Assemblage Zones); Conochitina langei Assemblage Zone; Conocbitina subcylindrica Assemblage Zone; and Belonecbitina micracantha Assemblage Zone. Chronostratigraphic assignments are based principally on associated conodont and graptolite faunas. Whereas the acritarch/prasinophyte zones bear scant similarities to those established globally elsewhere, the chitinozoan zones show significant affiliations with those known from Laurentia.