20 resultados para Acid-base Status
em University of Queensland eSpace - Australia
Resumo:
Changes in blood-gas, acid-base, and plasma-ion status were investigated in the bimodally respiring turtle, Rheodytes leukops, during prolonged dives of up to 12 h. Given that R. leukops routinely submerges for several hours, the objective of this study was to determine whether voluntarily diving turtles remain aerobic and simultaneously avoid hypercapnic conditions over increasing dive lengths. Blood PO2, PCO2, and pH, as well as plasma concentrations of lactate, glucose, Na+, K+, Cl-, total Ca, and total Mg were determined in venous blood collected from the occipital sinus. Blood PO2 declined significantly with dive length; however, oxy-haemoglobin saturation remained greater than 30% for all R. leukops sampled. No changes were observed in blood PCO2, pH, [HCO3-], or plasma glucose, with increasing dive length. Despite repeated dives lasting more than 2 h, plasma lactate remained less than 3 mmol l(-1) for all R. leukops sampled, indicating the absence of anaerobiosis. Compensatory acid-base adjustments associated with anaerobiosis (e.g. declining [Cl-], increasing total [Ca] and [Mg]) were likewise absent, with plasma-ion concentrations remaining stable with increasing dive length. Results indicate that R. leukops utilises aquatic respiration to remain aerobic during prolonged dives, thus effectively avoiding the development of a metabolic and respiratory acidosis.
Resumo:
Objective. To study the acid-base effects of crystalloid strong ion difference (SID) during haemodilution. Design. Prospective in vivo study. Setting. University laboratory. Subjects. Anaesthetised, mechanically ventilated Sprague-Dawley rats. Interventions. Rats were studied in seven groups of three. Each group underwent normovolaemic haemodilution with one of seven crystalloids, with SID values from 0 to 40 mEq/l. Six exchanges of 9 ml crystalloid for 3 ml blood were performed. Measurements and main results. [Hb] fell from 142+/-17 to 44+/-10 g/l (p
Resumo:
The objective of this study was to investigate how seasonally fluctuating environmental conditions influence the diving performance of the highly aquatic, bimodally respiring turtle Rheodytes leukops in a natural setting. Over four consecutive seasons (Austral autumn 2000 to summer 2001), the diving behaviour of adult turtles was recorded via pressure-sensitive time-depth recorders within Marlborough Creek, central Queensland, Australia. Short surfacing intervals recorded for R. leukops in winter suggest that the species utilizes aquatic respiration as an overwintering strategy to prevent the development of a metabolic acidosis during the long inactive dives observed during the season. As water temperature increases and aquatic P-O 2 decreases, R. leukops switches from facultative to obligate air-breathing, presumably because of the increased metabolic cost associated with aquatic respiration under summer conditions. Increases in mean surfacing time from winter to spring and summer are attributed to seasonal changes in behaviour possibly associated with foraging rather than to the physiological state of the turtle, given that no difference in median surfacing time among seasons was observed.
Seasonal changes in the diel surfacing behaviour of the bimodally respiring turtle Rheodytes leukops
Resumo:
The purpose of this study was to determine whether a relationship existed between the diel surfacing trends of the bimodally respiring freshwater turtle Rheodytes leukops and daily fluctuations in specific biotic and abiotic factors: The, diel surfacing behaviour of adult R. leukops was recorded over four consecutive seasons (Austral autumn 2000 - summer 2001) within Marlborough Creek, central Queensland, Australia, using pressure-sensitive time-depth recorders. Additionally, diurnal variations in water temperature and aquatic Po-2 level, as well as the turtle's behavioural state (i.e., active versus resting), were monitored. In autumn and summer, surfacing frequency increased significantly during the daylight hours, with peak levels normally occurring around dawn (0500-0700) and. dusk (1700-1900). However, no consistent diel surfacing trend was recorded, for the turtles in winter or spring, owing to considerable variation among individual R. leukops. Diurnal surfacing trends recorded for R. leukops in, autumn and summer are attributed to periods of increased activity (possibly associated with foraging) during the daylight hours and not to daily variations in water temperature or aquatic Po-2 level. Turtles generally remained at a depth greater than 1 m throughout the day, where the effect of diel fluctuations in water temperature, (
Resumo:
Rheodytes leukops is a bimodally respiring turtle that extracts oxygen from the water chiefly via two enlarged cloacal bursae that are lined with multi-branching papillae. The diving performance of R. leukops was compared to that of Emydura macquarii, a turtle with a limited ability to acquire aquatic oxygen. The diving performance of the turtles was compared under aquatic anoxia (0 mmHg), hypoxia (80 mmHg) and normoxia (155 mmHg) at 15, 23, and 30degreesC. When averaged across all temperatures the dive duration of R. leukops more than doubled from 22.4 +/- 7.65 min under anoxia to 49.8 +/- 19.29 min under normoxic conditions. In contrast, aquatic oxygen level had no effect on the dive duration of E. macquarii. Dive times for both species were significantly longer at the cooler temperature, and the longest dive recorded for each species was 538 min and 166 min for R. leukops and E. macquarii, respectively. Both species displayed a pattern of many short dives punctuated by occasional long dives irrespective of temperature or oxygen regime. Rheodytes leukops, on average, spent significantly less time (42 +/- 2 sec) at the surface per surfacing event than did E. macquarii (106 +/- 20 sec); however, surface times for both species were not related to either water temperature or oxygen level.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using H-1 NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.
Resumo:
This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O-2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.
Resumo:
Three new alkaloids, the two pyrrolidine type alkaloids (1 and 2) and 6E-pandanamine (3), together with five known alkaloids (4-8), were isolated from the leaves of Pandanus amaryllifolius collected in West Java, Indonesia. All the new alkaloids have two alpha-methyl alpha,beta-unsaturated gamma-lactone moieties, while compound 2 also has an additional seven-membered ring, which has not been encountered before in Pandanus alkaloids. Two different extraction methods, namely, a solvent partitioning extraction and acid-base treatment, were tested, giving secondary and tertiary amines, respectively. Spectroscopic and chemical studies showed that the tertiary amines isolated from the acid-base treatment were artifacts formed during the extraction process. This finding suggests that the use of conventional acid-base treatment in isolating Pandanus alkaloids should be reviewed since it can introduce artifacts.
Resumo:
In subtropical and tropical climates, dehydration is common in cystic fibrosis patients with respiratory exacerbations. This may lead to a clinical presentation of metabolic alkalosis with associated hyponatraemia and hypochloraemia. An adult cystic fibrosis patient who presented with a severe respiratory exacerbation accompanied by metabolic alkalosis is presented and the effects of volume correction are reported.
Resumo:
Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.
Resumo:
A diligent and careful examination of the mouth and oral structures has been historically deficient in revealing premalignant and malignant oral lesions. Conventional screening practice for oral neoplastic lesions involves visual scrutiny of the oral tissues with the naked eye under projected incandescent or halogen illumination. Visualization is the principal strategy used to find patients with lesions at risk for malignant transformation; hence, any procedure which highlights neoplastic lesions should aid the clinician. This pilot study examined the usefulness of acetic acid wash and chemiluminescent light (Vizilite) in enhancing visualization of oral mucosal white lesions, and its ability to highlight malignant and potentially malignant lesions. Fifty five patients referred for assessment of a white lesion, were prospectively screened with Vizilite, and an incisional biopsy performed for a definitive diagnosis. The age, sex, and smoking status of all patients were recorded, and all lesions were photographed. The visibility, location, size, border, and presence of satellite lesions, were also recorded. The Vizilite tool enhanced intraoral visualization of 26 white lesions, but it could not distinguish between epithelial hyperplasia, dysplasia, or carcinoma. Indeed, all lesions appeared ‘‘aceto-white’’, regardless of the definitive diagnosis. On one occasion, Vizilite aided in the identification of a satellite lesion that was not observed by routine visual inspection. Vizilite appears to be a useful visualization tool, but it does not aid in the identification of malignant and potentially malignant lesions of the oral mucosa.
Resumo:
The status and composition of the Diplosentidae Tubangui et Masilungan, 1937 are reviewed. The type species of the type genus, Diplosentis amphacanthi Tubangui et Masilungan, 1937 from Siganus canaliculatus (Park, 1797) in the Philippines, is concluded to have been described inaccurately,in supposedly possessing, only two cement glands and lemnisci enclosed in a membranous sac. The species is almost certainly very close to species of Neorhadinorhynchus yamaguti, 1939 and Sclerocollum Schmidt of Paperna, 1978 which have also been reported from siganids from the tropical Indo-Pacific. Species of these genera have four cement glands and unexceptional lemnisci. As a result, Diplosentis Tubangui et Masilungan, 1937 is best considered to have affinities with the Cavisomidae Meyer, 1932. The Cavisomidae has priority over the Diplosentidae; thus the Diplosentidae becomes a synonym of the Cavisomidae. Neorhadinorhynchus and Sclerocollum are considered synonyms of Diplosentis. The affinities of the other species and genera formerly included in the Diplosentidae (other species of Diplosentis, Allorhadinorhynchus Yamaguti, 1959, Amapacanthus Salgado-Maldonado et Santos, 2000, Pararhadinorhynchus Johnston et Edmonds, 1947, Golvanorhynchus Noronha, do Fabio et Pinto, 1978 and Slendrorhynchus Amin et Soy, 1996) are discussed. It is concluded that all but Pararhadinorhynchus, two species of Diplosentis and Amapacanthus can be accommodated elsewhere satisfactorily. A new family, Transvenidae, is proposed for a small group of acanthocephalans that genuinely possess only two cement glands. Transvena annulospinosa gen. n., sp. n. is described from the labrids Anampses neoguinaicus Bleeker, 1878 (type host), A. geographicus Valenciennes, 1840, A. caeruleopunctatus Ruppell, 1829, Hemigymnus fasciatus (Bloch, 1792), and H. melapterus (Bloch, 1791) from the Great Barrier Reef, Queensland, Australia. Transvena gen. n. is distinguished from all other acanthocephalan genera by having a combination of a single ring of small spines on its trunk near or at the junction between the neck and trunk, two cement glands, a double-walled proboscis receptacle and hooks which decrease in length from the apex to the base of the proboscis. A second new genus within the Transvenidae, Trajectura, is proposed for T. perinsolens sp. n. from Anampses neoguinaicus, also from the Great Barrier Reef. Trajectura gen. n. is distinguished by the possession of only two cement glands and an anterior conical projection (function unknown) on the females. Diplosentis ikedai Machida, 1992 shares these characters and is recombined as Trajectura ikedai comb. n. Pararhadinorhynchus is transferred to the Transvenidae and Diplosentis manteri Gupta et Fatma, 1979 is recombined as Pararhadinorhynchus manteri comb. n.