13 resultados para Absolute Stereochemistry
em University of Queensland eSpace - Australia
Resumo:
A Pd(II)-mediated hydroxycyclisation-carbonylation-lactonisation sequence has operated efficiently with racemic enediol (8) to furnish (four) separable diastereomers of the bicyclic lactone system assigned to the sponge-derived, bioactive plakortone E. All four are cis ring-fused, and one is identical, on the basis of H-1 and C-13 NMR spectroscopic comparisons, with plakortone E, thus confirming its constitution and relative stereochemistry about the bicyclic lactone core. This synthetic approach, when applied to stereoisomer (13), will establish the absolute stereochemistry of plakortone E, likely to be that shown for (14).
Resumo:
The absolute stereochemistry of amphilectene metabolites from Cribochalina sp. has been revised by a detailed NMR spectroscopic study of the Mosher ester derivatives of a related alcohol. The relative stereochemistry of the previously described amphilectenes has been reinvestigated and reassigned on the basis of the X-ray structural analysis carried out on one of them. The structure of a new amphilectene metabolite, which is an isothiocyanato analogue is also presented. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
[GRAPHICS] The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus are 4,6,8,10,16-penta- and 4,6,8,10,16,18-hexamethyldocosanes, I and 2, respectively. Stereoisomers of 2,4,6,8-tetramethylundecanal of established relative stereochemistry were derived from 2,4,6-trimethylphenol and were then coupled with appropriate methyl-substituted phosphoranes 62 and 25 to furnish alkenes, which on reduction provided diastereomers of I and 2, respectively. Capillary gas chromatography, mass spectrometry, and high resolution C-13 NMR spectroscopy confirmed 1 as either 84a or 84b and 2 as either 15a or 15b. The novelty of these structures and their relative stereochemistry is briefly related to polyketide assembly.
Resumo:
Azedaralide, a potentially advanced intermediate for the total synthesis of various tetranortriterpenes, was constructed utilising the Fernandez-Mateos protocol and assigned both relative and absolute stereochemistries. Both asymmetric aldol and classical chiral resolution attempts failed to deliver pure enantiomers whereas preparative chiral chromatography resolved racemic azedaralide with ease. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp(14) was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro(13) and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.
Resumo:
Absolute calibration relates the measured (arbitrary) intensity to the differential scattering cross section of the sample, which contains all of the quantitative information specific to the material. The importance of absolute calibration in small-angle scattering experiments has long been recognized. This work details the absolute calibration procedure of a small-angle X-ray scattering instrument from Bruker AXS. The absolute calibration presented here was achieved by using a number of different types of primary and secondary standards. The samples were: a glassy carbon specimen, which had been independently calibrated from neutron radiation; a range of pure liquids, which can be used as primary standards as their differential scattering cross section is directly related to their isothermal compressibility; and a suspension of monodisperse silica particles for which the differential scattering cross section is obtained from Porod's law. Good agreement was obtained between the different standard samples, provided that care was taken to obtain significant signal averaging and all sources of background scattering were accounted for. The specimen best suited for routine calibration was the glassy carbon sample, due to its relatively intense scattering and stability over time; however, initial calibration from a primary source is necessary. Pure liquids can be used as primary calibration standards, but the measurements take significantly longer and are, therefore, less suited for frequent use.