7 resultados para ASTM

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric corrosion tests, according to ASTM G50, have been carried out in Queensland, Australia, at three different sites representing three different environmental conditions. A range of materials including primary copper (electrosheet) and electrolytic tough pitch (traditional cold rolled) copper have been exposed. Data is available for five exposure periods over a three year time span. X-Ray Diffraction has been used to determine the composition of the corrosion products. Corrosion rates have been determined for each material at each of the exposure sites and are compared with corrosion rates obtained from other long term atmospheric corrosion test programs. Primary copper sheet (electrosheet) behaves like traditionally produced cold rolled copper (C11000) sheet but with an increased corrosion rate. This difference between the rolled copper samples and the primary copper samples is probably due to a combination of factors related to the difference in crystallographic texture of the underlying copper, the morphology and texture of the cuprite layer, the surface roughness of the sheets, and the differences in mass. These factors combine together to provide an increased oxidation rate and TOW for the electrosheet material and which is significantly higher at the more tropical sites. For a sulfate environment (Urban) the initial corrosion product is cuprite with posnjakite and brochantite also occurring at longer exposures. Posnjakite is either washed away or converted to brochantite during further exposure. The amount of brochantite increases with exposure time and forms the blue-green patina layer. For a chloride environment (Marine) the initial corrosion product is cuprite with atacamite also occurring at longer exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promoted-ignition testing on carbon steel rods of varying cross-sectional area and shape was performed in high pressure oxygen to assess the effect of sample geometry on the regression rate of the melting interface. Cylindrical and rectangular geometries and three different cross sections were tested and the regression rates of the cylinders were compared to the regression rates of the rectangular samples at test pressures around 6.9 MPa. Tests were recorded and video analysis used to determine the regression rate of the melting interface by a new method based on a drop cycle which was found to provide a good basis for statistical analysis and provide excellent agreement to the standard averaging methods used. Both geometries tested showed the typical trend of decreasing regression rate of the melting interface with increasing cross-sectional area; however, it was shown that the effect of geometry is more significant as the sample's cross sections become larger. Discussion is provided regarding the use of 3.2-mm square rods rather than 3.2-mm cylindrical rods within the standard ASTM test and any effect this may have on the observed regression rate of the melting interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promoted ignition tests and quench tests have been conducted and analysed for 3.2 mm aluminum rods in 99.995% oxygen. Tests have been conducted in oxygen pressures varying from 538 kPa to 773 kPa. Samples that self-extinguished or were quenched were selected for further analysis. The microstructure of the selected samples were analysed by electron microscopy, using energy dispersive spectrometry and electron back-scatter techniques, to identify and visualize, respectively, the species present. The grain structures of these samples were etched, viewed and photographed under polarized light by an optical microscope. From the micrographs produced by the post-test analysis, clearly defined boundaries between the oxide and the melted and resolidified metal have been observed. In both the melted and resolidified metal and the oxide layer, significant numbers of gas bubbles, solid inclusions and several diffuse oxide bubbles have been captured during the cooling process. It is concluded that convective movement is occurring within the molten drop and that analysis of quenched samples provides more useful information on the state of the burning droplet than samples allowed to cool slowly to room temperature. Recommendations are made regarding future investigations into aluminum burning, focusing on the transport of reactants through the liquid oxide layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard upward-burning promoted ignition tests (“Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres,” ASTM G4-124 [1] or “Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion,” NASA-STD-6001, NASA Test 17 [2]) were performed on cylindrical iron (99.95% pure) rods in various oxygen purities (95.0–99.98%) in reduced gravity onboard NASA JSC's KC-135 to investigate the effect of gravity on the regression rate of the melting interface. Visual analysis of experiments agrees with previous published observations showing distinct motions of the molten mass attached to the solid rod during testing. Using an ultrasonic technique to record the real-time rod length, comparison of the instantaneous regression rate of the melting interface and visual recording shows a non-steady-state regression rate of the melting interface for the duration of a test. Precessional motion is associated with a higher regression rate of the melting interface than for test periods in which the molten mass does not show lateral motion. The transition between the two types of molten mass motion during a test was accompanied by a reduced regression rate of the melting interface, approximately 15–50% of the average regression rate of the melting interface for the entire test.