11 resultados para AROMATIC SOLVENTS
em University of Queensland eSpace - Australia
Resumo:
Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1 - 2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1%) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis.
Resumo:
Three new aromatic butenolides, gymnoascolides A-C (1-3), have been isolated from the Australian soil ascomycete Gymnoascus reessii and assigned structures on the basis of detailed spectroscopic analysis. The absolute configurations of gymnoascolides B (2) and C (3) at C-5 were solved using a combination of chemical derivatization and quantum chemical simulations.
Resumo:
The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pK(a) was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution. A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well. N-2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.
Resumo:
On the basis of HF/6-31G(d) optimized structures, the nonplanar distortions of 135 polycyclic aromatic hydrocarbons (PAHs) have been classified as splitting (S-) and arching (A-) distortions. Three bay structures are proposed as the structural origin of S-distortion. Due to the limitation of sample molecules, a set of universal motifs for molecules containing A-distortions is not available; however, a set of motifs and parameters are developed for the semiquantitative estimation of the nonplanar strain energies of PAHs containing the corannulene structure, and the differences between the E, values from quantum calculations and those from these estimations vary from -5.60 to 5.51 kcal/mol. The above results are fundamentally important for the understanding of nonplanar distortion of PAHs and fullerenes, and this method can also be employed to semiquantitatively estimate strain energies of such molecules containing hundreds of carbon atoms.
Resumo:
The aim of this study was to evaluate the feasibility of using semipermeable membrane devices (SPMDs) and polyethylene-based passive sampler devices (PSDs) for monitoring PAHs in stormwater. Firstly, SPMDs were deployed at one site and SPMD-derived water concentrations were compared with water concentration measured from grab samples. In a subsequent deployment the performance of SPMDs and PSDs was compared. Finally PSDs of multiple surface area to volume ratios were used to compare PAH concentrations at the two sites. The results obtained in this study show that SPMDs can be used to measure the water concentration of PAHs with reasonable accuracy, when compared with grab samples collected at the same site. Importantly, several PAHs which could not be detected in a 10 L grab sample could be detected in the SPMDs. PSD and SPMD samplers produced similar results when deployed at the same site, with most estimated water concentrations within a factor of 1.5. The use of PSDs in multiple surface area to volume ratios proved to be an effective means of characterizing the uptake kinetics for PAHs in situ. Overall passive water samplers proved to be an efficient technique for monitoring PAHs in stormwater.
Resumo:
In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.