24 resultados para AQUIFER
em University of Queensland eSpace - Australia
Resumo:
Field observations on an unconfined coastal aquifer showed that a groundwater pulse, generated by it moderate (significant wave height, H-sig similar to 4.5 m) wave/storm event, induced significant oscillations in the salt-freshwater interface of the order of several metres in the horizontal direction. A dynamic sharp-interface model is developed to quantify the mechanism of these interface oscillations. The model uses the 50% seawater salinity contour as the location of the equivalent sharp-interface. The model was calibrated against the observed groundwater table fluctuations. It predicted reasonably well the interface oscillations with a slight over-prediction of the oscillation magnitude and a steepening of the interface. The neglect of mixing in the salt-freshwater mixing zone by the sharp-interface model is suggested as a possible contributor to the discrepancies between the model predictions and observations. In contrast with the significant wave effects, there was no observable response of the interface to diurnal or semidiurnal tides. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
[1] The profiles for the water table height h(x, t) in a shallow sloping aquifer are reexamined with a solution of the nonlinear Boussinesq equation. We demonstrate that the previous anomaly first reported by Brutsaert [1994] that the point at which the water table h first becomes zero at x = L at time t = t(c) remains fixed at this point for all times t > t(c) is actually a result of the linearization of the Boussinesq equation and not, as previously suggested [Brutsaert, 1994; Verhoest and Troch, 2000], a result of the Dupuit assumption. Rather, by examination of the nonlinear Boussinesq equation the drying front, i.e., the point x(f) at which h is zero for times t greater than or equal to t(c), actually recedes downslope as physically expected. This points out that the linear Boussinesq equation should be used carefully when a zero depth is obtained as the concept of an average'' depth loses meaning at that time.
Resumo:
Observations of horizontal and vertical variations in piezometric head in a homogeneous, laboratory aquifer are presented and discussed. The observed fluctuations are induced by a simple harmonic oscillation in the clear water reservoir acting across a sloping boundary. The data qualitatively supports existing theories in that higher harmonics are generated in the active forcing zone and that a significant increase in the inland, asymptotic watertable over height (relative to that found for the vertical boundary case) is observed. The observed overheight is shown to be accurately reproduced by existing small-amplitude perturbation theory. Detailed measurements in the vicinity of the sloping boundary reveal that the signal of generated higher harmonics is strongest near the sand surface and that vertical flows are significant in this region. The aquifer is of finite-depth and is influenced by capillary effects, the experimental data therefore exposes limitations of theories which are based on the assumption of a shallow aquifer free of capillary effects. The dispersive properties of the measured pressure wave in the aquifer are comparable to those found from field observations and likewise do not agree with those predicted by the capillary free, shallow aquifer theory. Although some improvement is obtained, discrepancies between the data and theory persist even when a finite-depth aquifer and capillary effects are considered in the theoretical model. Further sand column experiments eliminate a truncated capillary fringe as a possible contributor to these discrepancies. However, the neglect of horizontal flows in the fringe may have caused the discrepancies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The coupling of sandy beach aquifers with the swash zone in the vicinity of the water table exit point is investigated through simultaneous measurements of the instantaneous shoreline (swash front) location, pore pressures and the water table exit point. The field observations reveal new insights into swash-aquifer coupling not previously gleaned from measurements of pore pressure only. In particular, for the case where the exit point is seaward of the observation point, the pore pressure response is correlated with the distance between the exit point and the shoreline in that when the distance is large the rate of pressure drop is fast and when the distance is small the rate decreases. The observations expose limitations in a simple model describing exit point dynamics which is based only on the force balance on a particle of water at the sand surface and neglects subsurface pressures. A new modified form of the model is shown to significantly improve the model-data comparison through a parameterization of the effects of capillarity into the aquifer storage coefficient. The model enables sufficiently accurate predictions of the exit point to determine when the swash uprush propagates over a saturated or a partially saturated sand surface, potentially an important factor in the morphological evolution of the beach face. Observations of the shoreward propagation of the swash-induced pore pressure waves ahead of the runup limit shows that the magnitude of the pressure fluctuation decays exponentially and that there is a linear increase in time lags, behavior similar to that of tidally induced water table waves. The location of the exit point and the intermittency of wave runup events is also shown to be significant in terms of the shore-normal energy distribution. Seaward of the mean exit point location, peak energies are small because of the saturated sand surface within the seepage face acting as a "rigid lid'' and limiting pressure fluctuations. Landward of the mean exit point the peak energies grow before decreasing landward of the maximum shoreline position.
Resumo:
The Boussinesq equation appears as the zeroth-order term in the shallow water flow expansion of the non-linear equation describing the flow of fluid in an unconfined aquifer. One-dimensional models based on the Boussinesq equation have been used to analyse tide-induced water table fluctuations in coastal aquifers. Previous analytical solutions for a sloping beach are based on the perturbation parameter, epsilon(N) = alphaepsilon cot beta (in which beta is the beach slope, alpha is the amplitude parameter and epsilon is the shallow water parameter) and are limited to tan(-1) (alphaepsilon) much less than beta less than or equal to pi/2. In this paper, a new higher-order solution to the non-linear boundary value problem is derived. The results demonstrate the significant influence of the higher-order components and beach slope on the water table fluctuations. The relative difference between the linear solution and the present solution increases as 6 and a increase, and reaches 7% of the linear solution. (C) 2003 Elsevier Ltd. All rights reserved.
Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia
Resumo:
Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.
Resumo:
Seawater intrusion in coastal agricultural areas due to groundwater abstraction is a major environmental problem along the northeastern coast of Australia. Management options are being explored using numerical modelling, however, questions remain concerning the appropriate level of sophistication in models, choice of seaward boundary conditions, and how to accommodate heterogeneity and data uncertainty. The choice of seaward boundary condition is important since it affects the amount of salt transported into the aquifers and forms the focus of the present study. The impact of this boundary condition is illustrated for the seawater-intrusion problem in the Gooburrum aquifers, which occur within Tertiary sedimentary strata. A two-dimensional variable-density groundwater and solute-transport model was constructed using the computer code 2DFEMFAT (Cheng et al. 1998). The code was tested against an experiment for a steady-state freshwater-saltwater interface and against the Elder (Elder 1967) free-convection problem. Numerical simulations show that the imposition of the commonly-used equivalent hydrostatic freshwater heads, combined with a constant salt concentration at the seaward boundary, results in overestimated seawater intrusion in the lower Gooburrum aquifer. Since the imposition of this boundary condition allows water flow across the boundary, which subsequently takes salt into the aquifer, a careful check is essential to estimate whether too much mass of salt is introduced.
Resumo:
Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse-like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm-induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are examined.