32 resultados para ANTHRACYCLINE ANTIBIOTICS
em University of Queensland eSpace - Australia
Resumo:
Chemical analysis of an Australian Streptomyces species yielded a range of known anthracyclines and biosynthetically related metabolites, including daunomycin (1), E-rhodomycinone (2), 11-hydroxyauramycinone (3), 11-hydroxysulfurmycinone (4), aklavinone (5), bisanhydro-gamma-rhodomycinone (6), and the anthraquinone 7, as well as the hitherto unreported blanchaquinone (8). The structure assigned to 8 was secured by detailed spectroscopic analysis and correlation to known analogues, such as the anthraquinone 7. This account also represents the first natural occurrence of 3, 4, and 7 and the first spectroscopic characterization of 11-hydroxysulfurmycinone (4).
Resumo:
The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.
Resumo:
Awareness of antibiotics in wastewaters and aquatic ecosystems is growing as investigations into alternate pollutants increase and analytical techniques for detecting these chemicals improve. The presence of three antibiotics (ciproffoxacin, norfloxacin and cephalexin) was evaluated in both sewage effluent and environmental waters downstream from a sewage discharge. Bacteria cultured from the sewage bioreactor and receiving waters were tested for resistance against six antibiotics (ciprofloxacin, tetracycline, ampicillin, trimethoprim, erythromycin and trimethoprim/sulphamethoxazole) and effects of short term exposure (24h) to antibiotics on bacterial denitrification rates were examined. Antibiotics were detected entering the sewage treatment plant with varying levels of removal during the treatment process. Antibiotics were also detected in effluent entering receiving waters and detectable 500m from the source. Among the bacteria cultured from the sewage bioreactor, resistance was displayed against all six antibiotics tested and bacteria cultured from receiving waters were resistant against two of the antibiotics tested. Rates of denitrification were observed to decrease in response to some antibiotics and not to others, though this was only observed at concentrations exceeding those likely to be found in the environment. Findings from this preliminary research have indicated that antibiotics are entering our aquatic systems and pose a potential threat to ecosystem function and potentially human health. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Phylogenetic analysis of the ketosynthase (KS) gene sequences of marine sponge-derived Salinispora strains of actinobacteria indicated that the polyketide synthase (PKS) gene sequence most closely related to that of Salinispora was the rifamycin B synthase of Amycolatopsis mediterranei. This result was not expected from taxonomic species tree phylogenetics using 16S rRNA sequences. From the PKS sequence data generated from our sponge-derived Salinispora strains, we predicted that such strains might synthesize rifamycin-like compounds. Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis was applied to one sponge-derived Salinispora strain to test the hypothesis of rifamycin synthesis. The analysis reported here demonstrates that this Salinispora isolate does produce compounds of the rifamycin class, including rifamycin B and rifamycin SV. A rifamycin-specific KS primer set was designed, and that primer set increased the number of rifamycin-positive strains detected by PCR screening relative to the number detectable using a conserved KS-specific set. Thus, the Salinispora group of actinobacteria represents a potential new source of rifamycins outside the genus Amycolatopsis and the first recorded source of rifamycins from marine bacteria.
Resumo:
No Abstract