48 resultados para ANT DIVERSITY
em University of Queensland eSpace - Australia
Resumo:
This article provides a review of recent developments in two topical areas of research in contemporary organizational behavior: diversity and emotions. In the section called “Diversity,”we trace the history of diversity research, explore the definitions and paradigms used in treatments of diversity, and signal new areas of interest. We conclude that organizational behavior in the 21st century is evolving to embrace a more eclectic and holistic view of humans at work. In the section called “Emotions,” we turn our attention to recent developments in the study of emotions in organizations. We identify four major topics: mood theory, emotional labor, affective events theory (AET), and emotional intelligence, and argue that developments in the four domains have significant implications for organizational research, and the progression of the study of organizational behavior. As with the study of diversity, the topic of emotions in the workplace is shaping up as one of the principal areas of development in management thought and practice for the next decade. Finally, we discuss in our conclusion how these two areas are being conceptually integrated, and the implications for management scholarship and research in the contemporary world.
Resumo:
Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.
Resumo:
The Australian-bred lucerne cultivars, Trifecta and Sequel, were found to possess useful levels of resistance to both Colletotrichum trifolii races 1 and 2. Race 2 has only been previously observed in the United States and surveys did not reveal its presence in Australia. Multilocus fingerprinting using random amplified polymorphic DNA (RAPDs) analysis revealed low diversity (<10% dissimilarity) within Australian C. trifolii collections, and between the Australian race 1 isolates and a US race 2 isolate. Studies on the inheritance of resistance to C. trifolii race 1 in individual clones from Trifecta and Sequel revealed the presence of 2 different genetic mechanisms. One inheritance was for resistance as a recessive trait, and the other indicated that resistance was dominant. The recessive system has never been previously reported, whereas in the US, 2 completely dominant and independent tetrasomic genes Anl and Ant have been reported to condition C. trifolii resistance. It was not possible to fit the observed segregations from our studies to a single-gene model. In contrast to US studies, clones of cv. Sequel exhibiting the recessive resistance reacted differently to spray and stem injection with C. trifolii inoculum, being resistant to the former and susceptible to the latter, providing additional evidence for the presence of a different genetic mechanism conditioning resistance to those previously reported in the US. As C. trifolii is one of the most serious diseases of lucerne worldwide, the future development of molecular markers closely linked to the dominant and recessive resistances identified in these studies, and the relationships between these resistances and Anl and Ans as determined by genetic mapping, appear to be useful areas of future study.
Resumo:
The Digenea is one of five major helminth assemblages represented in Australian animals. History of the study of digeneans in Australia is reviewed briefly to show that it has never been subjected to the kind of sustained study needed to reach an understanding of it. The Australian vertebrate fauna comprises over 5500 species. These have so far been shown to harbour just over 70 families, about 306 genera and 566 species of digeneans. Digeneans occur in all classes of vertebrates in Australia but are distributed very unevenly; aquatic hosts are generally most heavily infected, but many terrestrial species are also infected. Particular weaknesses in knowledge of the fauna concern the bats, cetaceans and teleosts. Another weakness is in knowledge of life-cycles; representative life-cycles are known for only about 20 of the 70 families known in Australia. Estimates of the overall size of the fauna are dependent on an understanding of sampling strategies, the heterogeneity of distribution of the fauna, and the nature of host-specificity. These subjects are reviewed briefly and an estimate of the total fauna is made. There may be as many as 6000 species of digeneans in Australia. (C) 1998 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
The synthetic peptide pilosulin 1, corresponding to the largest defined allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula, inhibited the incorporation of [methyl-H-3]thymidine into proliferating Epstein-Barr transformed (EBV) B-cells. The LD50 was four-fold lower in concentration than melittin, a cytotoxic peptide found in honey bee venom. Loss of cell viability was assessed by flow cytometry by measuring the proportion of cells that fluoresced in the presence of the fluorescent dye 7-aminoactinomycin D. Examination of proliferating EBV B-cells indicated that the cells lost viability within a few minutes exposure to pilosulin 1. Partial peptides of pilosulin 1 were less efficient in causing loss of cell viability and the results suggest that the 22 N-terminal residues are critical to the cytotoxic activity of pilosulin 1. Normal blood white cells were also labile to pilosulin I. T- and B-lymphocytes, monocytes and natural killer cells, however, were more labile than granulocytes. Analysis of pilosulin I using circular dichroism indicated that, in common with melittin and other Hymenoptera venom toxins, it had the potential to adopt an cc-helical secondary structure. (C) 1998 Elsevier Science B.V, All rights reserved.
Resumo:
We quantified differences in the abundance and diversity of bird species at inherent (naturally occurring) and induced (human-created) edges in the Murray Mallee, South Australia, to explore the effects of anthropogenic landscape modification. Bird species were classified into edge response categories based on numerical differences in abundance between the edge and interior of habitat patches. 'Open-country' species (e.g. Australian Magpie and Little Raven) increased in abundance near induced edges, but were rarely recorded > 200 m into patch interiors or at inherent edges. The Australian Ringneck, Red Wattlebird, Spiny-cheeked Honeyeater, Singing Honeyeater and White-eared Honeyeater increased in abundance near each inherent edge and were classified as 'edge-users'. However, their responses at induced edges varied between sites. The Yellow-plumed Honeyeater, Spotted Pardalote, White-browed Babbler, Chestnut Quail-thrush and Southern Scrub-robin decreased in abundance near one or more induced edges and were classified as 'edge-avoiders' at these sites. The Yellow-plumed Honeyeater, Spotted Pardalote, Chestnut Quail-thrush and Southern Scrub-robin are considered mallee habitat specialists in eastern Australia. These species may be particularly affected by anthropogenic modification of mallee vegetation.
Resumo:
Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (D-m = 0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (D-m South Africa = 0.020 and D-m Australia = 0.025 respectively), negative fixation indices, and significant deviations from Hardy-Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.
Resumo:
Monosaccharides provide an excellent platform to tailor molecular diversity by appending desired substituents at selected positions around the sugar scaffold. The presence of five functionalized and stereo-controlled centres on the sugar scaffolds gives the chemist plenty of scope to custom design molecules to a pharmacophore model. This review focuses on the peptidomimetic developments in this area, as well as the concept of tailoring structural and functional diversity in a library using carbohydrate scaffolds and how this can lead to increased hit rates and rapid identification of leads, which has promising prospects for drug development.
Resumo:
The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.
Resumo:
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian and zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hither-to neglected monsoonal tropics.