5 resultados para AMBLYOMMA-AMERICANUM
em University of Queensland eSpace - Australia
Resumo:
The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.
Resumo:
Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
There is evidence that high-tillering, small-panicled pearl millet landraces are better adapted to the severe, unpredictable drought stress of the and zones of NW India than are low-tillering, large-panicled modern varieties, which significantly outyield the landraces under favourable conditions. In this paper, we analyse the relationship of and zone adaptation with the expression, under optimum conditions, of yield components that determine either the potential sink size or the ability to realise this potential. The objective is to test whether selection under optimal conditions for yield components can identify germplasm with adaptation to and zones in NW India, as this could potentially improve the efficiency of pearl millet improvement programs targeting and zones. We use data from an evaluation of over 100 landraces from NW India, conducted for two seasons under both severely drought-stressed and favourable conditions in northwest and south India. Trial average grain yields ranged from 14 g m(-2) to 182 g m(-2). The landraces were grouped into clusters, based on their phenology and yield components as measured under well-watered conditions in south India. In environments without pre-flowering drought stress, tillering type had no effect on potential sink size, but low-tillering, large-panicled landraces yielded significantly more grain, as they were better able to realise their potential sink size. By contrast, in two low-yielding and zone environments which experienced pre-anthesis drought stress, low-fillering, large-panicled landraces yielded significantly less grain than high-tillering ones with comparable phenology, because of both a reduced potential sink size and a reduced ability to realise this potential. The results indicate that the high grain yield of low-tillering, large-panicled landraces under favourable conditions is due to improved partitioning, rather than resource capture. However, under severe stress with restricted assimilate supply, high-tillering, small-panicled landraces are better able to produce a reproductive sink than are large-panicled ones. Selection under optimum conditions for yield components representing a resource allocation pattern favouring high yield under severe drought stress, combined with a capability to increase grain yield if assimilates are available, was more effective than direct selection for grain yield in identifying germplasm adapted to and zones. Incorporating such selection in early generations of variety testing could reduce the reliance on random stress environments. This should improve the efficiency of millet breeding programs targeting and zones. (c) 2005 Elsevier B.V. All rights reserved.