12 resultados para ALTITUDINAL ZONATION
em University of Queensland eSpace - Australia
Resumo:
We investigated the adaptive significance of behavioural thermoregulation in univoltine populations of the grasshopper Melanoplus sanguinipes along an altitudinal gradient in California using laboratory tests of animals raised under different temperatures. Trials consisted of continuous body temperature measurements with semi-implanted microprobes in a test arena, and observation and simultaneous recording of behavioural responses. These responses included mobility, basking and orientation of the body axes (aspect angle) towards a radiation source. Mobility and basking are determined by the altitudinal origin of the parental generation and not by the temperature treatments. With increasing altitude, individuals tend increasingly to raise body temperatures via mobility and increased basking. In contrast, body orientation towards the radiation source is influenced by the temperature treatments but not by the altitude of origin. Individuals experiencing higher temperatures during rearing show a lower tendency to lateral flanking. We conclude that body orientation responses are not adapted locally. In contrast other components of the behavioural syndrome that increase body temperature, such as mobility and basking, are adaptive in response to local selection pressure. The thermoregulatory syndrome of these grasshoppers is an important contribution to life-history adaptations that appropriately match season lengths.
Resumo:
Numerous factors affect the distribution of mangrove plants. Most mangrove species are typically dispersed by water-buoyant propagules, allowing them to lake advantage of estuarine, coastal and ocean currents both to replenish existing stands and to establish new ones. The direction they travel depends on sea currents and land barriers, but the dispersal distance depends on the time that propagules remain buoyant and viable. This is expected to differ for each species. Similarly, each species will also differ in establishment success and growth development rate, and each has tolerance limits and growth responses which are apparently unique. Such attributes are presumably responsible for the characteristic distributional ranges of each species, as each responds to the environmental, physical and biotic settings they might occupy. In practice, species are often ordered by the interplay of different factors along environmental gradients, and these may conveniently be considered at four geographic scales-global, regional, estuarine and intertidal. We believe these influencing factors act similarly around the world, and to demonstrate this point, we present examples of distributional gradients from the two global biogeographic regions, the Atlantic East Pacific and the Indo-West Pacific.
Resumo:
This paper assesses the reliability with which fossil reefs record the diversity and community structure of adjacent Recent reefs. The diversity and taxonomic composition of Holocene raised fossil reefs was compared with those of modern reef coral life and death assemblages in adjacent moderate and low-energy shallow reef habitats Of Madang Lagoon, Papua New Guinea. Species richness per sample area and Shannon-Wiener diversity (H') were highest in the fossil reefs, intermediate in the life assemblages, and lowest in the death assemblages. The taxonomic composition of the fossil reefs was most similar to the combination of the life and death assemblages from the modern reefs adjacent to the two fossil reefs. Depth zonation was recorded accurately in the fossil reefs. The Madang fossil reefs represent time-averaged composites of the combined life and death assemblages as they existed at the time the reef was uplifted. Because fossil reefs include overlapping cohorts from the life and death assemblages, lagoonal facies of fossil reefs are dominated by the dominant sediment-producing taxa, which are not necessarily the most abundant in the life assemblage. Rare or slow-growing taxa accumulate more slowly than the encasing sediments and are underrepresented in fossil reef lagoons. Time-averaging dilutes the contribution of rare taxa, rather than concentrating their contribution. Consequently, fidelity indices developed for mollusks in sediments yield low values in coral reef death and fossil assemblages. Branching corals dominate lagoonal facies of fossil reefs because they are abundant, they grow and produce sediment rapidly, and most of the sediment they produce is not exported. Fossil reefs distinguished kilometer-scale variations in community structure more clearly than did the modern life assemblages. This difference implies that fossil,reefs may provide a better long-term record of community structure than modern reefs. This difference also suggests that modern kilometer-scale variation in coral reef community structure may have been reduced by anthropogenic degradation, even in the relatively unimpacted reefs of Madang Lagoon. Holocene and Pleistocene fossil reefs provide a time-integrated historical record of community composition and may be used as long-term benchmarks for comparison with modern, degraded, nearshore reefs. Comparisons between fossil reefs and degraded modern reefs display gross changes in community structure more effectively than they demonstrate local extinction of rare taxa.
Resumo:
Habitat use, diet and body-size variation are examined in weevils from Heard Island. with specific attention being given to the Ectemnorhinus viridis species complex. E. viridis shows marked altitudinal variation in body size and vestiture, but there are no consistent associations between body size and diet. nor are there consistent among-individual differences in conventional taxonomic characters. Thus, the status of E. viridis as a single, variable species is maintained. This species occurs from sea level to 600 rn and it feeds on vascular plants and bryophytes. Canonopsis sericeus also feeds on bryophytes and vascular plants and occurs over a narrower altitudinal range. Palirhoeus eatoni is restricted to the surpralittoral zone where it feeds on marine algae and lichens. Bothrometopus brei,is and B. gracilipes both feed on cryptogams, with the former species occurring from sea level to 450 m. and the latter from 50 to 550 m above sea level. In all species, males are smaller than females and there is a size cline such that populations from higher elevations are smaller than those at lower altitudes. This cline is the reverse of that found on the Prince Edward Islands which, unlike Heard Island, lie to the north of the Antarctic Polar Frontal Zone. This difference in body-size clines between weevils on the two island groups is ascribed to the shorter growing season on the colder Heard Island. The information presented here supports previous ideas regarding the evolution of the Ectemnorhinus-group of weevils on the South Indian Ocean Province Islands, although it suggests that subsequent tests of these hypotheses would profit from the inclusion of molecular systematic work.
Resumo:
The Bandas del Sur Formation preserves a Quaternary extra-caldera record of central phonolitic explosive volcanism of the Las Canadas volcano at Tenerife. Volcanic rocks are bimodal in composition, being predominantly phonolitic pyroclastic deposits, several eruptions of which resulted in summit caldera collapse, alkali basaltic lavas erupted from many fissures around the flanks. For the pyroclastic deposits, there is a broad range of pumice glass compositions from phonotephrite to phonolite. The phonolite pyroclastic deposits are also characterized by a diverse, 7-8-phase phenocryst assemblage (alkali feldspar + biotite + sodian diopside + titanomagnetite + ilmenite + nosean-hauyne + titanite + apatite) with alkali feldspar dominant, in contrast to interbedded phonolite lavas that typically have lower phenocryst contents and lack hydrous phases. Petrological and geochemical data are consistent with fractional crystallization (involving the observed phenocryst assemblages) as the dominant process in the development of phonolite magmas. New stratigraphically constrained data indicate that petrological and geochemical differences exist between pyroclastic deposits of the last two explosive cycles of phonolitic volcanism. Cycle 2 (0.85-0.57 Ma) pyroclastic fall deposits commonly show a cryptic compositional zonation indicating that several eruptions tapped chemically, and probably thermally stratified magma systems. Evidence for magma mixing is most widespread in the pyroclastic deposits of Cycle 3 (0.37-0.17 Ma), which includes the presence of reversely and normally zoned phenocrysts, quenched mafic glass blebs in pumice, banded pumice, and bimodal to polymodal phenocryst compositional populations. Syn-eruptive mixing events involved mostly phonolite and tephriphonolite magmas, whereas a pre-eruptive mixing event involving basaltic magma is recorded in several banded pumice-bearing ignimbrites of Cycle 3. The periodic addition and mixing of basaltic magma ultimately may have triggered several eruptions. Recharge and underplating by basaltic magma is interpreted to have elevated sulphur contents (occurring as an exsolved gas phase) in the capping phonolitic magma reservoir. This promoted nosean-hauyne crystallization over nepheline, elevated SO3 contents in apatite, and possibly resulted in large, climatologically important SO2 emissions.
Resumo:
Enterohepatic recycling occurs by biliary excretion and intestinal reabsorption of a solute, sometimes with hepatic conjugation and intestinal deconjugation. Cycling is often associated with multiple peaks and a longer apparent half-life in a plasma concentration-time profile. Factors affecting biliary excretion include drug characteristics (chemical structure, polarity and molecular size), transport across sinusoidal plasma membrane and canniculae membranes, biotransformation and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux and gut-wall metabolism. Recently, there has been a considerable increase in our understanding of the role of transporters, of gene expression of intestinal and hepatic enzymes, and of hepatic zonation. Drugs, disease and genetics may result in induced or inhibited activity of transporters and metabolising enzymes. Reduced expression of one transporter, for example hepatic canalicular multidrug resistance-associated protein (MRP) 2, is often associated with enhanced expression of others, for example the usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. In addition, physiologically relevant pharmacokinetic models, which describe enterohepatic recirculation in terms of its determinants (such as sporadic gall bladder emptying), have been developed. In general, enterohepatic recirculation may prolong the pharmacological effect of certain drugs and drug metabolites. Of particular importance is the potential amplifying effect of enterohepatic variability in defining differences in the bioavailability, apparent volume of distribution and clearance of a given compound. Genetic abnormalities, disease states, orally administered adsorbents and certain coadministered drugs all affect enterohepatic recycling.
Resumo:
Acclimation of gas exchange to temperature and light was determined in 18-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell., and in those of a dry inland provenance of Eucalyptus argophloia Blakely. Plants were acclimated at day/night temperatures of 18/13, 23/18, 28/23 and 33/ 28 degreesC in controlled-temperature glasshouses for 4 months. Light and temperature response curves were measured at the beginning and end of the acclimation period. There were no significant differences in the shape and quantum-yield parameters among provenances at 23, 28 and 33 degreesC day temperatures. Quantum yield [mumol CO2 mumol(- 1) photosynthetic photon flux density (PPFD)] ranged from 0.04 to 0.06 and the light response shape parameter ranged from 0.53 to 0.78. Similarly, no consistent trends in the rate of dark respiration for plants of each provenance were identified at the four growth temperatures. Average values of dark respiration for the plants of the three provenances ranged from 0.61 to 1.86 mumol m(-2) s(-1). The optimum temperatures for net photosynthesis increased from 23 to 32 degreesC for the humid- and from 25 to 33 degreesC for the dry-provenance E. cloeziana and from 21 to 33 degreesC for E. argophloia as daytime temperature of the growth environment increased from 18 to 33 degreesC. These results have implications in predicting survival and productivity of E. cloeziana and E. argophloia in areas outside their natural distribution.
Resumo:
Despite a considerable surge in herpetological research in Australia over the last couple of decades the Australian microhylid frogs (Cophixalus and Austrochaperina) remain relatively poorly known. Herein I present the results of extensive fieldwork and molecular, morphological and call analysis with the aim of resolving taxonomy, call variation and distributions, and increasing our understanding of breeding biology. Analysis of 943 base pairs of mitochondrial 16S rRNA and 12S rRNA provides a well supported phylogeny that is largely consistent with current taxonomy. Levels of divergence between species are substantial and significant phylogeographic structuring is evident in C. ornatus, C. neglectus and C. aenigma, sp. nov. The description of C. concinnus was based on a mixed collection of two species from Thornton Peak and a new species is described to resolve this. C. aenigma, sp. nov., is described from high-elevation (>750 m) rainforest across the Carbine, Thornton, Finnigan and Bakers Blue Mountain uplands, north-east Queensland. C. concinnus is redescribed as a highly distinct species restricted to rainforest and boulder fields at the summit of Thornton Peak (>1100 m). Despite protection in Daintree National Park in the Wet Tropics World Heritage Area, predictions of the impact of global warming suggest C. concinnus to be of very high conservation concern ( Critically Endangered, IUCN criteria). The mating call of two species ( C. mcdonaldi and C. exiguus) is described for the first time and high levels of call variation within C. ornatus, C. neglectus, C. hosmeri, C. aenigma and Austrochaperina fryi are presented. Such variation is often attributable to genetically divergent lineages, altitudinal variation and courtship; however, in some instances ( particularly within C. hosmeri) the source or function of highly distinct calls at a site remains obscure. Molecular, morphological and call analyses allow the clarification of species distributions, especially in the northern mountains of the Wet Tropics. Notes are presented on the breeding biology of C. aenigma, C. bombiens, C. concinnus, C. exiguus, C. infacetus, C. mcdonaldi, C. monticola, C. neglectus, C. ornatus and C. saxatilis, which are largely consistent with previous accounts: small terrestrial clutches usually attended by a male. Courtship behaviour in C. ornatus is described and the first records of multiple clutching in Australian microhylids are presented (for C. ornatus and C. infacetus).
Resumo:
We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.
Resumo:
We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.
Resumo:
In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This second and concluding part of a comprehensive palynological study of the Lower to Middle Ordovician succession of the central-northeastern Canning Basin completes the systematic documentation of the palynomorphs, i.e., chitinozoans, and formulates a palynostratigraphic zonation scheme embracing all three constituent formations of this investigation, viz., the Willara, Goldwyer, and Nita formations. A total of 21 species of chitinozoans (five genera), detailed systematically herein, are identified. Although chitinozoan recovery per sample proved variable, the following species occur fairly persistently in the productive samples: Belonechitina micracantha, Conochitina subcylindrica, C. poumoti, C. langei, Calpichitina windjana, and Rhabdochitina magna. Five, stratigraphically successive acritarch/prasinophyte assemblage zones, ranging in age from early Arenig through late Llanvirn, are proposed as follows (ascending order): Athabascaella rossii Assemblage Zone (corresponding to the lower Willara Formation; and dated as early-mid Arenig); Comasphaeridium setaricum Assemblage Zone (upper Willara and lowermost Goldwyer; late Arenig-earliest Llanvirn); Sacculidium aduncum Assemblage Zone (lower Goldwyer; early Llanvirn); Aremorica-nium solaris Assemblage Zone (middle and lower upper Goldwyer; mid Llanvirn); and Dactylofusa striatogranulata Assemblage Zone (upper Goldwyer and lower Nita; late Llanvirn). Four chitinozoan assemblage zones, stratigraphically coinciding (within the limits of sampling) with the acritarch/prasinophyte zones, comprise (in ascending order): Lagenochitina combazi Assemblage Zone (equivalent to the A. rossii and L. heterorhabda Assemblage Zones); Conochitina langei Assemblage Zone; Conocbitina subcylindrica Assemblage Zone; and Belonecbitina micracantha Assemblage Zone. Chronostratigraphic assignments are based principally on associated conodont and graptolite faunas. Whereas the acritarch/prasinophyte zones bear scant similarities to those established globally elsewhere, the chitinozoan zones show significant affiliations with those known from Laurentia.