169 resultados para ALPHA-LIPOIC ACID

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells from patients with the genetic disorder ataxia-telangiectasia (A-T) are hypersensitive to ionizing radiation and radiomimetic agents, both of which generate reactive oxygen species capable of causing oxidative damage to DNA and other macromolecules. We describe in A-T cells constitutive activation of pathways that normally respond to genotoxic stress, Basal levels of p53 and p21(WAF1/CIP1), phosphorylation on serine 15 of p53, and the Tyr15-phosphorylated form of cdc2 are chronically elevated in these cells. Treatment of A-T cells with the antioxidant alpha -lipoic acid significantly reduced the levels of these proteins, pointing to the involvement of reactive oxygen species in their chronic activation. These findings suggest that the absence of functional ATM results in a mild but continuous state of oxidative stress, which could account for several features of the pleiotropic phenotype of A-T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Alpha-lipoic acid (ALA) is a thiol compound with antioxidant properties used in the treatment of diabetic polyneuropathy. ALA may also improve arterial function, but there have been scant human trials examining this notion. This project aimed to investigate the effects of oral and intra-arterial ALA on changes in systemic and regional haemodynamics, respectively. Methods In study 1, 16 healthy older men aged 58 +/- 7 years (mean +/- SD) received 600 mg of ALA or placebo, on two occasions 1 week apart, in a randomized cross-over design. Repeated measures of peripheral and central haemodynamics were then obtained for 90 min. Central blood pressure and indices of arterial stiffness [augmentation index (AIx) and estimated aortic pulse wave velocity] were recorded non-invasively using pulse wave analysis. Blood samples obtained pre- and post-treatments were analysed for erythrocyte antioxidant enzyme activity, plasma nitrite and malondialdehyde. In study 2 the effects of incremental cumulative doses (0.5, 1.0, 1.5 and 2.0 mg ml(-1) min(-1)) of intra-arterial ALA on forearm blood flow (FBF) were assessed in eight healthy subjects (aged 31 +/- 5 years) by conventional venous occlusion plethysmography. Results There were no significant changes on any of the central or peripheral haemodynamic measures after either oral or direct arterial administration of ALA. Plasma ALA was detected after oral supplementation (95% confidence intervals 463, 761 ng ml(-1)), but did not alter cellular or plasma measures of oxidative stress. Conclusions Neither oral nor intra-arterial ALA had any effect on regional and systemic haemodynamics or measures of oxidative stress in healthy men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of dietary antioxidant supplementation with alpha-tocopherol and alpha-lipoic acid on cyclosporine A (cyclosporine)-induced alterations to erythrocyte and plasma redox balance. Rats were randomly assigned to either control, antioxidant (alpha-tocopherol 1000 IU/kg diet and alpha-lipoic acid 1.6 g/kg diet), cyclosporine (25 mg/kg/day), or cyclosporine + antioxidant treatments. Cyclosporine was administered for 7 days after an 8 week feeding period. Plasma was analysed for alpha-tocopherol, total antioxidant capacity, malondialdehyde, and creatinine. Erythrocytes were analysed for glutathione, methaemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Cyclosporine administration caused a significant decrease in superoxide dismutase activity (P < 0.05 control versus cyclosporine) and this was improved by antioxidant supplementation (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P < 0.05 control versus cyclosporine + antioxidant). Animals receiving cyclosporine and antioxidants showed significantly increased (P < 0.05) catalase activity compared to both groups not receiving cyclosporine. Cyclosporine administration induced significant increases in plasma malondialdehyde and creatinine concentration (P < 0.05 control versus cyclosporine). Antioxidant supplementation prevented the cyclosporine induced increase in plasma creatinine (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P > 0.05 control versus cyclosporine + antioxidant), however, supplementation did not alter the cyclosporine induced increase in plasma malondialdehyde concentration (P > 0.05 cyclosporine versus cyclosporine + antioxidant). Antioxidant supplementation resulted in significant increases (P < 0.05) in plasma and erythrocyte alpha-tocopherol in both of the supplemented groups compared to non-supplemented groups. In conclusion, dietary supplementation with alpha-tocopherol and alpha-lipoic acid enhanced the erythrocyte antioxidant defence and reduced nephrotoxicity in cyclosporine treated animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin E and a-lipoic acid are potent nutritional antioxidants, and when used together, their antioxidant capabilities are improved as a-lipoic acid recycles vitamin E. Supplementation of vitamin E has been shown to prolong platelet aggregation but the effects of vitamin E and alpha-lipoic acid supplementation on bleeding tendency have yet to be reported. Young, male rats consumed either control diet (n=5) or vitamin E and a-lipoic acid-supplemented diet (n=5) for 14 weeks. Activated partial thromboplastin time (APTT) and prothrombin time (PT) were measured as markers of intrinsic and extrinsic coagulation pathways respectively in addition to lipid peroxidation (malondialdehyde). Supplementation significantly prolonged APTT (23.8 +/- 1.5 vs 31.4 +/- 1.2s, p < 0.05) compared to the con-trol diet; however, there was no significant difference in PT (27.8 +/- 1.5 vs 26.6 +/- 0.9s, p > 0.05). While vitamin E was increased (p < 0.05), there was no significant difference in plasma levels of malondialdehyde (p > 0.05). Dietary supplementation of vitamin E and alpha-lipoic acid increases bleeding tendency via inhibition of the intrinsic coagulation pathway with no change in markers of lipid peroxidation. Such supplementation could benefit patients with cardiovascular disease who exhibit elevated levels of coagulation and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of antioxidant supplementation in the prevention of cardiovascular disease appears equivocal, however the use of more potent antioxidant combinations than those traditionally used may exert a more positive effect. We have shown previously that supplementation of vitamin E and α-lipoic acid increases cardiac performance during post-ischemia reperfusion in older rats and increases Bcl-2 levels in endothelial cells. The purpose of this study was to examine the effects of vitamin E and α-lipoic acid supplementation on myocardial gene expression with a view to determine their mechanism of action. Young male rats received either a control (n=7) or vitamin E and α-lipoic acid supplemented diet (n=8) for 14 weeks. RNA from myocardial tissue was then amplified and samples were pooled within groups and competitively hybridized to 5K oligonucleotide rat microarrays. The relative expression of each gene was then compared to the control sample. Animals that received the antioxidant-supplemented diet exhibited upregulation (>1.5×) of 13 genes in the myocardium with 2 genes downregulated.� �Upregulated genes include those involved in cell growth and maintenance (LynB, Csf1r, Akt2, Tp53), cell signaling (LynB, Csf1r) and signal transduction (Pacsin2, Csf1r). Downregulated genes encode thyroid (Thrsp) and F-actin binding proteins (Nexilin).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal transplant recipients (RTRs) have elevated oxidative stress and a high incidence of cardiovascular morbidity and mortality. Although recent studies do not support the use of antioxidant supplements as a cardioprotectant in the general population, evidence suggests that RTRs may represent individuals that would benefit from this therapy. RTRs have elevated oxidative stress probably caused by the immunosuppressive therapy, and although only a small number of studies have examined the effects of antioxidant supplementation in these patients, most have reported beneficial findings. This review discusses these studies along with the rationale for the use of antioxidant supplements in RTRs and a call for more research to investigate this important topic.