19 resultados para ALGAL BLOOMS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades. some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations Such as the NAO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) have increased in abundance and severity in recent decades. Whereas the implications for human impacts and intoxication resulting from blooms have been extensively studied, the ecological implications of these microalgae are less well understood. Many HAB species produce biologically active, secondary metabolites and the fate of these toxins through the foodweb is generally not well understood unless it culminates in extensive fish mortalities or human poisonings. This review focusses on one HAB species, the cyanobacterium Lyngbya majuscula, and presents a hypothetical role for its involvement in fibro-papillornatosis (FP), a neoplastic disease of marine turtles. FP is expressed as benign tumours that grow both internally and externally on marine turtles, preventing vision, movement and organ function. The aetiology of FP is currently not conclusively understood, but virus material has been associated with tumours and previous studies have suggested a role for naturally produced tumour promoters. In this review, we present a hypothesis regarding the involvement of L. majuscula in FP, either through direct intoxication and action of tumour-promoting compounds or indirectly by causing seagrass loss and compromised immune function, thus leaving the turtles more susceptible to disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bioavailability of iron, in combination with essential macronutrients such as phosphorus, has been hypothesised to be linked to nuisance blooms of the toxic cyanobacterium Lyngbya majuscula. The present laboratory study used two biological assay techniques to test whether various concentrations of added iron (inorganic and organically chelated) enhanced L. majuscula filament growth and productivity (C-14-bicarbonate uptake rate). Organically chelated iron (FeEDTA) with adequate background concentrations of phosphorus and molybdenum caused the largest increases (up to 4.5 times the control) in L. majuscula productivity and filament growth. The addition of inorganic iron (without added phosphorus or molybdenum) also stimulated L. majuscula filament growth. However, overall the FeEDTA was substantially and significantly more effective in promoting L. majuscula growth than inorganic iron (FeCl3). The organic chelator (EDTA) alone and molybdenum alone also enhanced L. majuscula growth but to a lesser extent than the chelated iron. The results of the present laboratory study support the hypothesis that iron and chelating organic compounds may be important in promoting blooms of L. majuscula in coastal waters of Queensland, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade there has been a significant rise in observations of blooms of the toxic cyanobacterium, Lyngbya majuscula along the east coast of Queensland, Australia. Whether the increase in cyanobacterial abundance is a biological indicator of widespread water quality degradation or also a function of other environmental change is unknown. A bioassay approach was used to assesses the potential for runoff from various land uses to stimulate productivity of L. majuscula. In Moreton Bay, L. majuscula productivity was significantly (p < 0.05) stimulated by soil extracts, which were high in phosphorus, iron and organic carbon. Productivity of L. majuscula from the Great Barrier Reef was also significantly (p < 0.05) elevated by iron and phosphorus rich extracts, in this case seabird guano adjacent to the bloom site. Hence, it is possible that other L. majuscula blooms are a result of similar stimulating factors (iron, phosphorus and organic carbon), delivered through different mechanisms. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of Lyngbya majuscula have been increasingly recorded in the waters of Moreton Bay, on the south-east coast of Queensland, Australia. The influences of these blooms on sediment infauna and the implications for sediment biogeochemical processes was studied. Sediment samples were taken from Moreton Bay banks during and after the bloom season. The deposition of L. majuscula seems to be responsible for the higher total Kjedahl nitrogen (TKN) concentrations measured during the bloom period. Total organic carbon (TOC) concentrations did not change. Lyngbya majuscula blooms had a marked influence on the meiobenthos. Nematodes, copepods and polychaetes were the most abundant groups of meiofauna, and the bloom produced a decrease in the abundance and a change in the sediment depth distribution of these organisms. The distribution of nematodes, copepods and polychaetes in sediment became shallower. Further, the bloom did not affect the abundance and distribution of polychaetes as strongly as it did copepods and nematodes. The changes observed in the distribution of meiofauna in the sediment during the bloom period indicate that L. majuscula produces oxygen depletion in sediments, and that different fauna seem to be affected to different degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scale at which algal biodiversity is partitioned across the landscape, and the biophysical processes and biotic interactions which shape these communities in dryland river refugia was studied on two occasions from 30 sites in two Australian dryland rivers. Despite the waterholes studied having characteristically high levels of abiogenic turbidity, a total of 186 planktonic microalgae, 253 benthic diatom and 62 macroalgal species were recorded. The phytoplankton communities were dominated by flagellated cryptophytes, euglenophytes and chlorophytes, the diatom communities by cosmopolitan taxa known to tolerate wide environmental conditions, and the macroalgal communities by filamentous cyanobacteria. All algal communities showed significant differences between catchments and sampling times, with a suite of between 5 and 12 taxa responsible for similar to 50% of the observed change. In general, algal assemblage patterns were poorly correlated with the measured environmental variables. Phytoplankton and diatom assemblage patterns were weakly correlated with several waterhole geomorphic measures, whereas macroalgal assemblage patterns showed some association with variability in ionic concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trophodynamics of blooms of the toxic marine cyanobacterium Lyngkya majuscula were investigated to determine dietary specificity in two putative grazers: the opisthobranch molluscs, Stylocheilus striatus and Bursatella leachii. S. striatus is associated with L. majuscula blooms and is known to sequester L. majuscula metabolites. The dietary specificity and toxicodynamics of B. leachii in relation to L. majuscula is less well documented. In this study we found diet history had no significant effect upon dietary selectivity of S. striatus when offered a range of plant species. However, L. majuscula chemotype may alter S. striatus' selectivity for this cyanobacterium. Daily biomass increases between small and large size groups of both species were recorded in no-choice consumption trials using L. majuscula. Both S. striatus and B. leachii preferentially consumed L. majuscula containing lyngbyatoxin-a. Increase in mass over a 10-day period in B. leachii (915%) was significantly greater than S. striatus (150%), yet S. striatus consumed greater quantities of L. majuscula (g day(-1)) and thus had a lower conversion efficiency (0.038) than B. leachii (0.081) based on sea hare weight per gram of L. majuscula consumed day(-1). Our findings suggest that growth rates and conversion efficiencies may be influenced by sea hare maximum growth potential, acquisition of secondary metabolites or diet type. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: