18 resultados para AIRCRAFT SEAT
em University of Queensland eSpace - Australia
Resumo:
Social surveys have established dose-response relationships between aircraft noise and annoyance, with a number of psychological symptoms being positively related to annoyance. Evidence that exposure to aircraft noise is associated with higher psychiatric hospital admission rates is mixed. Some evidence exists of an association between aircraft noise exposure and use of psychotropic medications. People with a pre-existing psychological or psychiatric condition may be more susceptible to the effects of exposure to aircraft noise. Aircraft noise can produce effects on electroencephalogram sleep patterns and cause wakefulness and difficulty in sleeping. Attendances at general practitioners, self-reported health problems and use of medications, have been associated with exposure to aircraft noise, but some findings are inconsistent. Some association between aircraft noise exposure and elevated mean blood pressure has been observed in cross-sectional studies of schoolchildren, but with little confirmation from cohort studies. There is no convincing evidence to suggest that all-cause or cause-specific mortality is increased by exposure to aircraft noise. There is no strong evidence that aircraft noise has significant perinatal effects. Using the World Health Organization definition of health, which includes positive mental and social wellbeing, aircraft noise is responsible for considerable ill-health. However, population-based studies have not found strong evidence that people living near or under aircraft flight paths suffer higher rates of clinical morbidity or mortality as a consequence of exposure to aircraft noise. A dearth of high quality studies in this area precludes drawing substantive conclusions.
Resumo:
Study Objective: Community-based models for injury prevention have become an accepted part of the overall injury control strategy. This systematic review of the scientific literature examines the evidence for their effectiveness in reducing injury due to inadequate car seat restraint use in children 0-16 years of age. Methods: A comprehensive search of the literature was performed using the following study selection criteria: community-based intervention study: target population was children aged 0-16 years of age; outcome measure was either injury rates due to motor vehicle crashes or observed changes in child restraint use; and use of community control or historical control in the study design. Quality assessment and data abstraction was guided by a standardized procedure and performed independently by two authors. Data synthesis was in tabular and text form with meta-analysis not being possible due to the discrepancy in methods and measures between the studies. Results: This review found eight studies, that met all the inclusion criteria. In the studies that measured injury outcomes, significant reductions in risk of motor vehicle occupant injury (33-55%) were reported in the study communities. For those studies reporting observed car seat restraint use the community-based programs were successful in increasing toddler restraint use in 1-5 year aged children by up to 11%; child booster seat use in 4-8 year aged children by up to 13%; rear restraint use in children aged 0-15 years by 8%; a 50% increase in restraint use in pre-school aged children in a high-risk community; and a 44% increase in children aged 5-11 years. Conclusion: While this review highlights that there is some evidence to support the effectiveness of community-based programs to promote car restraint use and/or motor vehicle occupant injury, limitations in the evaluation methodologies of the studies requires the results to be interpreted with caution. There is clearly a need for further high quality program evaluation research to develop an evidence base. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Timber deck with built-in seat overlooking greater landscape beyond.
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
Training-needs analysis is critical for defining and procuring effective training systems. However, traditional approaches to training-needs analysis are not suitable for capturing the demands of highly automated and computerized work domains. In this article, we propose that work domain analysis can identify the functional structure of a work domain that must be captured in a training system, so that workers can be trained to deal with unpredictable contingencies that cannot be handled by computer systems. To illustrate this argument, we outline a work domain analysis of a fighter aircraft that defines its functional structure in terms of its training objectives, measures of performance, basic training functions, physical functionality, and physical context. The functional structure or training needs identified by work domain analysis can then be used as a basis for developing functional specifications for training systems, specifically its design objectives, data collection capabilities, scenario generation capabilities, physical functionality, and physical attributes. Finally, work domain analysis also provides a useful framework for evaluating whether a tendered solution fulfills the training needs of a work domain.
Resumo:
The current study was designed to confirm that female drivers sit closer to the steering wheel than do male drivers and to investigate whether this expected difference in sitting position is attributable to differences in the physical dimensions of men and women. Driver body dimensions and multiple measures of sitting distance from the steering wheel were collected from a sample of 150 men and 150 women. The results confirmed that on average, women sit closer to the steering wheel than men do and that this difference is accounted for by variations in body dimensions, especially height. This result suggests that driver height may provide a good surrogate for sitting distance from the steering wheel when investigating the role of driver position in real-world crash outcomes. The potential applications of this research include change to vehicle design that allows independent adjustment of the relative distance among the driver's seat, the steering wheel, and the floor pedals.
Resumo:
General measures of reaction to noise, which assess the respondent's perceived affectedness or dissatisfaction, appear to be more valid and internally consistent than more narrow measures, such as specific assessment of noise annoyance. However, the test-retest reliability of general and specific measures has yet to be compared. As a part of the large-scale Sydney Airport Health Study, 97 respondents participated in the same interview twice, several weeks apart. Test-retest reliabilities were found to be significant (p
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
The experiment examined the influence of memory for prior instances on aircraft conflict detection. Participants saw pairs of similar aircraft repeatedly conflict with each other. Performance improvements suggest that participants credited the conflict status of familiar aircraft pairs to repeated static features such as speed, and dynamic features such as aircraft relative position. Participants missed conflicts when a conflict pair resembled a pair that had repeatedly passed safely. Participants either did not attend to, or interpret, the bearing of aircraft correctly as a result of false memory-based expectations. Implications for instance models and situational awareness in dynamic systems are discussed.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.