2 resultados para AIR ACTIVITY

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of air-breathing organs (ABOs) is associated not only with hypoxic environments but also with activity. This investigation examines the effects of hypoxia and exercise on the partitioning of aquatic and aerial oxygen uptake in the Pacific tarpon. The two-species cosmopolitan genus Megalops is unique among teleosts in using swim bladder ABOs in the pelagic marine environment. Small fish ( 58 - 620 g) were swum at two sustainable speeds in a circulating flume respirometer in which dissolved oxygen was controlled. For fish swimming at 0.11 m s(-1) in normoxia (Po-2 = 21 kPa), there was practically no air breathing, and gill oxygen uptake was 1.53 mL kg(-0.67) min(-1). Air breathing occurred at 0.5 breaths min(-1) in hypoxia ( 8 kPa) at this speed, when the gills and ABOs accounted for 0.71 and 0.57 mL kg(-0.67) min(-1), respectively. At 0.22 m s(-1) in normoxia, breathing occurred at 0.1 breaths min(-1), and gill and ABO oxygen uptake were 2.08 and 0.08 mL kg(-0.67) min(-1), respectively. In hypoxia and 0.22 m s(-1), breathing increased to 0.6 breaths min(-1), and gill and ABO oxygen uptake were 1.39 and 1.28 mL kg(-0.67) min(-1), respectively. Aquatic hypoxia was therefore the primary stimulus for air breathing under the limited conditions of this study, but exercise augmented oxygen uptake by the ABOs, particularly in hypoxic water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth performance and endocrine responses of male weaner pigs (3 to 8 weeks of age) was evaluated in two different environments (clean and dirty) and housing (single or groups of 10 pigs/pen) conditions. The dirty environment contained significantly elevated ammonia, carbon dioxide and dust levels compared with the clean environment. Pigs grew faster and consumed more feed in the clean environment and this was associated with reduced plasma cortisol concentrations compared with pigs in the dirty environment. Pigs housed in groups in the dirty environment had increased β-endorphin and decreased IGF-I concentrations compared to group housed pigs in the clean environment. Feed conversion efficiency did not differ due to environment or group housing. Plasma concentration of cortisol, p-endorphin, IGF-I and IGF-II did not differ between single and group housed pigs. Activity of the hypothalamic-pituitary-adrenal (HPA) axis was greater in response to environmental conditions than group housing, and this was associated with reduced growth in weaner pigs. © 2004 Elsevier B.V. All rights reserved.