5 resultados para AGE ESTIMATION
em University of Queensland eSpace - Australia
Resumo:
The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.
Resumo:
Knowledge of factors affecting the survival of individuals and their reproductive success is essential for threatened species management, but studies assessing these factors are lacking for many threatened rock-wallaby species. In this study we investigated the factors influencing the breeding performance of females and the survival of pouch young in a wild colony of the threatened brush-tailed rock-wallaby. Individuals were trapped between October 2000 and April 2004. More than 50% of the females in the colony were breeding below their full potential and giving birth to only one offspring per year. Most females within the colony bred in synchrony, with a substantial birth peak evident during autumn. Pouch young born in autumn left the pouch during spring and were weaned during summer and autumn when forage was most abundant. Pouch young born during the autumn birth peak or in winter had a substantially higher probability of surviving through to pouch emergence than those born during spring or summer. This study provides demographic parameters that may be used in population models and for comparison with other populations, particularly those that are small and declining. To optimise reproductive success in reintroduction programs, females in good condition and with small pouch young should be released at the end of the wettest season.
Resumo:
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.
Resumo:
Sex- and age-class-specific survival probabilities of a southern Great Barrier Reef green sea turtle population were estimated using a capture - mark - recapture (CMR) study and a Cormack - Jolly - Seber (CJS) modelling approach. The CMR history profiles for 954 individual turtles tagged over a 9-year period ( 1984 - 1992) were classified into three age classes ( adult, subadult, juvenile) based on somatic growth and reproductive traits. Reduced-parameter CJS models, accounting for constant survival and time-specific recapture, fitted best for all age classes. There were no significant sex-specific differences in either survival or recapture probabilities for any age class. Mean annual adult survival was estimated at 0.9482 (95% CI: 0.92 - 0.98) and was significantly higher than survival for either subadults or juveniles. Mean annual subadult survival was 0.8474 ( 95% CI: 0.79 - 0.91), which was not significantly different from mean annual juvenile survival estimated at 0.8804 ( 95% CI: 0.84 - 0.93). The time-specific adult recapture probabilities were a function of sampling effort but this was not the case for either juveniles or subadults. The sampling effort effect was accounted for explicitly in the estimation of adult survival and recapture probabilities. These are the first comprehensive sex- and age-class-specific survival and recapture probability estimates for a green sea turtle population derived from a long-term CMR program.
Resumo:
Background There are substantial social inequalities in adult male mortality in many countries. Smoking is often more prevalent among men of lower social class, education, or income. The contribution of smoking to these social inequalities in mortality remains uncertain. Methods The contribution of smoking to adult mortality in a population can be estimated indirectly from disease-specific death rates in that population (using absolute lung cancer rates to indicate proportions due to smoking of mortality from certain other diseases). We applied these methods to 1996 death rates at ages 35-69 years in men in three different social strata in four countries, based on a total of 0.6 million deaths. The highest and lowest social strata were based on social class (professional vs unskilled manual) in England and Wales, neighbourhood income (top vs bottom quintile) in urban Canada, and completed years of education (more than vs less than 12 years) in the USA and Poland. Results In each country, there was about a two-fold difference between the highest and the lowest social strata in overall risks of dying among men aged 35-69 years (England and Wales 21% vs 43%, USA 20% vs 37%, Canada 21% vs 34%, Poland 26% vs 50%: four-country mean 22% vs 41%, four-country mean absolute difference 19%). More than half of this difference in mortality between the top and bottom social strata involved differences in risks of being killed at age 35-69 years by smoking (England and Wales 4% vs 19%, USA 4% vs 15%, Canada 6% vs 13%, Poland 5% vs 22%: four-country mean 5% vs 17%, four-country mean absolute difference 12%). Smoking-attributed mortality accounted for nearly half of total male mortality in the lowest social stratum of each country. Conclusion In these populations, most, but not all, of the substantial social inequalities in adult male mortality during the 1990s were due to the effects of smoking. Widespread cessation of smoking could eventually halve the absolute differences between these social strata in the risk of premature death.