37 resultados para ADAPTIVE TRAITS
em University of Queensland eSpace - Australia
Resumo:
Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this spice using a quantitative genetics model of a plant breeding program (QU-GENE) to simulate recurrent selection. Complex epistatic and gene X environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene X gene X environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.
Resumo:
New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.
Resumo:
New tools derived from advances in molecular biology have not been widely adopted in plant breeding because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. We explore whether a crop growth and development modelling framework can link phenotype complexity to underlying genetic systems in a way that strengthens molecular breeding strategies. We use gene-to-phenotype simulation studies on sorghum to consider the value to marker-assisted selection of intrinsically stable QTLs that might be generated by physiological dissection of complex traits. The consequences on grain yield of genetic variation in four key adaptive traits – phenology, osmotic adjustment, transpiration efficiency, and staygreen – were simulated for a diverse set of environments by placing the known extent of genetic variation in the context of the physiological determinants framework of a crop growth and development model. It was assumed that the three to five genes associated with each trait, had two alleles per locus acting in an additive manner. The effects on average simulated yield, generated by differing combinations of positive alleles for the traits incorporated, varied with environment type. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages with gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies. We simulated a marker-assisted selection (MAS) breeding strategy based on the analyses of gene effects. When marker scores were allocated based on the contribution of gene effects to yield in a single environment, there was a wide divergence in rate of yield gain over all environments with breeding cycle depending on the environment chosen for the QTL analysis. It was suggested that knowledge resulting from trait physiology and modelling would overcome this dependency by identifying stable QTLs. The improved predictive power would increase the utility of the QTLs in MAS. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate QTLs.
Resumo:
The wild mungbean, Vigna radiata ssp. sublobata, is an 'old world' tropical species indigenous throughout the better watered areas of northern Australia. Variation among 115 accessions, mainly from Australia, West Timor, and Papua New Guinea, was evaluated for several diverse traits. The plants were cultivated in the field at 2 sowing dates, at both a tropical and a subtropical location, with 6 accessions from India and a mungbean cultivar for comparison. Substantial variation was identified for traits of potential agronomic, adaptive, or taxonomic interest. For some traits, like phenology, the variation appeared to be systematic, with plausible underlying physiological and/or adaptive explanation. Among accessions, wild type traits, like prostrate habit, more gracile morphology, twining form, and small hard seeds, tended to be associated. There was a general geographic trend for lines collected from locations more remote from where mungbean has historically been cultivated to show greater expression of wild type traits, with few 'traits of domestication' evident in the Australian accessions. Some of the identified variation, e. g. higher seed protein content, hardseededness, and putative disease resistance, may be of value in mungbean variety improvement. A more targetted evaluation of the collection would likely reveal other adaptations, especially tolerance to environmental stresses. As such, the wild accessions are a potentially valuable if under-utilised germplasm resource.
Resumo:
We compared within-population variability and degree of population differentiation for neutral genetic markers (RAPDS) and eight quantitative traits in Central American populations of the endangered tree, Cedrela odorata. Whilst population genetic diversity for neutral markers (Shannon index) and quantitative traits (heritability, coefficient of additive genetic variation) were uncorrelated, both marker types revealed strong differentiation between populations from the Atlantic coast of Costa Rica and the rest of the species' distribution. The degree of interpopulation differentiation was higher for RAPD markers (F-ST 0.67 for the sampled Mesoamerican range) than for quantitative traits (Q(ST) = 0.30). Hence, the divergence in quantitative traits was lower than could have been achieved by genetic drift alone, suggesting that balancing selection for similar phenotypes in different populations of this species. Nevertheless, a comparison of pair-wise estimates of population differentiation in neutral genetic markers and quantitative traits revealed a strong positive correlation (r = 0.66) suggesting that, for C. odorata, neutral marker divergence could be used as a surrogate for adaptive gene divergence for conservation planning. The utility of this finding and suggested further work are discussed.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
From an experiment in which corals are transplanted between two depths on a Panamanian coral reef, Baker1 infers that bleaching may sometimes help reef corals to survive environmental change. Although Baker's results hint at further mechanisms by which reef-building corals may acclimatize to changing light conditions, we do not consider that the evidence supports his inference.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.