10 resultados para ACTIVATED RESTORATIVE MATERIALS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study aimed to determine the reasons for dentists' choice of materials, in particular amalgam and resin composite, in Australia. Method: A questionnaire was developed to elicit this information. The names and addresses of 1000 dentists in Australia were selected at random. The questionnaire was mailed to these dentists with an explanatory letter and reply-paid envelope. Results: A total of 560 replies were received. Regarding choice of material, 99 per cent of respondents cited clinical indication as an influencing factor, although patients' aesthetic demands (99 per cent), patients' financial situation (82 per cent), and lecturers' suggestions (72 per cent) were also reported to influence respondents' choice of materials. Twelve per cent of respondents used composite 'always', 29 per cent 'often', 32 per cent 'sometimes', 23 per cent 'seldom' and 4 per cent 'never' in extensive load-bearing cavities in molar teeth. For composite restorations in posterior teeth, 84 per cent 'always', 'often' or 'sometimes' used the total etch technique, 84 per cent used a thick glass-ionomer layer and 36 per cent never used rubber dam. Fifty-nine per cent of respondents reported a decreased use of amalgam over the previous five years. Sixty-eight per cent of respondents agreed with the statement 'discontinuation of amalgam restricts a dentist's ability to adequately treat patients'. Seventy-five per cent considered that the growth in the use of composites increased the total cost of oral health care. Conclusions: Of the respondents from Australia 73 per cent place large composite restorations in molar teeth and their choice of material is influenced greatly by clinical indications, and patients' aesthetic demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A review is given of the pore characterization of carbonaceous materials, including activated carbon, carbon fibres, carbon nanotubes, etc., using adsorption techniques. Since the pores of carbon media are mostly of molecular dimensions, the appropriate modem tools for the analysis of adsorption isotherms are grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT). These techniques are presented and applications of such tools in the derivation of pore-size distribution highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of nitrogen in spherical pores of FDU-1 silica at 77 K is considered by means of a nonlocal density functional theory (NLDFT) accounting for a disordered structure of pore walls. Pore size distribution analysis of various FDU-1 samples subject to different temperatures of calcination revealed three distinct groups of pores. The principal group of pores is identified as ordered spherical mesopores connected with each other by smaller interconnecting pores and irregular micropores present in the mesopore walls. To account for the entrances (connecting pores) into spherical mesopores, a concept of solid mass distribution with respect to the apparent density was introduced. It is shown that the introduction of the aforementioned distribution was sufficient to quantitatively describe experimental adsorption isotherms over the entire range of relative pressures spanning six decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of supercritical fluids is increasingly carried out to determine the micropore size distribution. This is largely motivated by the advances in the use of supercritical adsorption in high energy applications, such as hydrogen and methane storage in porous media. Experimental data are reported as mass excess versus pressure, and when these data are matched against the theoretical mass excess, significant errors could occur if the void volume used in the calculation of the experimental mass excess is incorrectly determined [Malbrunot, P.; Vidal, D.; Vermesse, J.; Chahine, R.; Bose, T. K. Langmuir 1997, 13, 539]. 1 The incorrect value for the void volume leads to a wrong description of the maximum in the plot of mass excess versus pressure as well as the part of the isotherm over the pressure region where the isotherm is decreasing. Because of this uncertainty in the maximum and the decreasing part of the isotherm, we propose a new method in which the problems associated with this are completely avoided. Our method involves only the relationship between the amount that is introduced into the adsorption cell and the equilibrium pressure. This information of direct experimental data has two distinct advantages. The first is that the data is the raw data without any manipulation (i.e., involving further calculations), and the second one is that this relationship always monotonically increases with pressure. We will illustrate this new method with the adsorption data of methane in a commercial sample of activated carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.