7 resultados para ABDUCTION
em University of Queensland eSpace - Australia
Resumo:
The structure and function of the pharyngeal jaw apparatus (PJA) and postpharyngeal alimentary tract of Arrhamphus sclerolepis krefftii, an herbivorous hemiramphid, were investigated by dissection, light and scanning electron microscopy, and X-ray analysis of live specimens. A simple model of PJA operation is proposed, consisting of an adductive power stroke of the third pharyngobranchial that draws it posteriorly while the fifth ceratobranchial is adducted, and a return stroke in which the third pharyngobranchial bone is drawn anteriorly during abduction of the fifth ceratobranchial. Teeth in the posteromedial region of the PJA are eroded into an occlusion zone where the teeth of the third pharyngobranchial are spatulate incisiform and face posteriorly in opposition to the rostrally oriented spatulate incisiform teeth in the wear zone of the fifth ceratobranchial. The shape of the teeth and their pedestals (bone of attachment) is consistent with the model and with the forces likely to operate on the elements of the PJA during mastication. The role of pharyngeal tooth replacement in maintaining the occlusal surfaces in the PJA during growth is described. The postpharyngeal alimentary tract of A. sclerolepis krefftii comprises a stomachless cylinder that attenuates gradually as it passes straight to the anus, interrupted only by a rectal valve. The ratio of gut length to standard length is about 0.5. Despite superficial similarities to the cichlid PJA (Stiassny and Jensen [1987] Bull Mus Comp Zool 151: 269-319), the hemiramphid PJA differs in the fusion of the third pharyngobranchial bones, teeth in the second pharyngobranchials and the fifth ceratobranchial face anteriorly, the presence of a slide-like diarthroses between the heads of the fourth epibranchials and the third pharyngobranchial, the occlusion zone of constantly wearing teeth, and the unusual form of the muscularis craniopharyngobranchialis. The functional relationship between these structures is explained and the consequence for the fish of a complex PJA and a simple gut is discussed. (C) 2002 Wiley-Liss, Inc.
Resumo:
The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Resumo:
Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.
Resumo:
Neurodynamic tests such as the straight leg raising (SLR) and slump test are frequently used for assessment of mechanosensitivity of neural tissues. However, there is ongoing debate in the literature regarding the contributions of neural and non-neural tissues to the elicited symptoms because many structures are affected by these tests. Sensitizing manoeuvres are limb or spinal movements added to neurodynamic tests, which aim to identify the origin of the symptoms by preferentially loading or unloading neural structures. A prerequisite for the use of sensitizing manoeuvres to identify neural involvement is that the addition of sensitizing manoeuvres has no impact on pain perception when the origin of the pain is non-neural. In this study, experimental muscle pain was induced by injection of hypertonic saline in tibialis anterior or soleus in 25 asymptomatic, naive volunteers. A first experiment investigated the impact of hip adduction, abduction, medial and lateral rotation in the SLR position. In a second experiment, the different stages of the slump test were examined. The intensity and area of experimentally induced muscle pain did not increase when sensitizing manoeuvres were added to the SLR or throughout the successive stages of the slump test. The findings of this study lend support to the validity of the use of sensitizing manoeuvres during neurodynamic testing. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.