17 resultados para 700000 - Information and Communication Services
em University of Queensland eSpace - Australia
Resumo:
In the last decade, with the expansion of organizational scope and the tendency for outsourcing, there has been an increasing need for Business Process Integration (BPI), understood as the sharing of data and applications among business processes. The research efforts and development paths in BPI pursued by many academic groups and system vendors, targeting heterogeneous system integration, continue to face several conceptual and technological challenges. This article begins with a brief review of major approaches and emerging standards to address BPI. Further, we introduce a rule-driven messaging approach to BPI, which is based on the harmonization of messages in order to compose a new, often cross-organizational process. We will then introduce the design of a temporal first order language (Harmonized Messaging Calculus) that provides the formal foundation for general rules governing the business process execution. Definitions of the language terms, formulae, safety, and expressiveness are introduced and considered in detail.
Resumo:
Large amounts of information can be overwhelming and costly to process, especially when transmitting data over a network. A typical modern Geographical Information System (GIS) brings all types of data together based on the geographic component of the data and provides simple point-and-click query capabilities as well as complex analysis tools. Querying a Geographical Information System, however, can be prohibitively expensive due to the large amounts of data which may need to be processed. Since the use of GIS technology has grown dramatically in the past few years, there is now a need more than ever, to provide users with the fastest and least expensive query capabilities, especially since an approximated 80 % of data stored in corporate databases has a geographical component. However, not every application requires the same, high quality data for its processing. In this paper we address the issues of reducing the cost and response time of GIS queries by preaggregating data by compromising the data accuracy and precision. We present computational issues in generation of multi-level resolutions of spatial data and show that the problem of finding the best approximation for the given region and a real value function on this region, under a predictable error, in general is "NP-complete.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
Existing negotiation agents are primitive in terms of what they can learn and how responsive they are towards the changing negotiation contexts. These weaknesses can be alleviated if an expressive representation language is used to represent negotiation contexts and a sound inference mechanism is applied to reason about the preferential changes arising in these negotiation contexts. This paper illustrates a novel adaptive negotiation agent model, which is underpinned by the well-known AGM belief revision logic. Our preliminary experiments show that the performance of the belief-based adaptive negotiation agents is promising.