32 resultados para 620205 Tropical fruit

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana fruit are highly susceptible to chilling injury during low temperature storage. Experiments were conducted to compare ethylene binding during storage at chilling (3 and 8 degreesC) versus optimum (13 degreesC) temperatures. The skins of fruit stored at 3 and 8 degreesC gradually darkened as storage duration increased. This chilling effect was reflected in increasing membrane permeability as shown by increased relative electrolyte leakage from skin tissue. In contrast, banana fruit stored for 8 days at 13 degreesC showed no chilling injury symptoms. Exposure of banana fruit to the ethylene binding inhibitor 1-methylcyclopropene (1 mul l(-1) 1-MCP) prevented ripening. However, this treatment also enhanced the chilling injury accelerated the occurrence of chilling injury-associated increased membrane permeability. C-14-ethylene release assay showed that ethylene binding by banana fruit stored at low temperature decreased with reduced storage temperature and/or prolonged storage time. Fruit exposed to 1-MCP for 12 h and then stored at 3 or 8 degreesC exhibited lower ethylene binding than those stored at 13 degreesC. Thus, chilling injury of banana fruit stored at low temperature is associated with a decrease in ethylene binding. The ability of tissue to respond to ethylene is evidently reduced, thereby resulting in failure to ripen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case study reports the post-harvest qualities of conventionally versus organically grown banana fruit from nearby plantations in the Dominican Republic. The comparison involved six repeated harvests over the transition from cooler to hotter seasons. Green mature Cavendish 'Grande Naine' banana fruit were shipped to the UK. They were triggered to ripen with ethylene gas and kept under simulated retail conditions. Fruit mass, colour, firmness and flavour parameters were measured every second day over 12 d of shelf life. Sensory comparisons were conducted on four of the six harvest times. Significant differences (P<0.05) in measured quality attributes between conventionally and organically grown fruit were few and marginal. Moreover, any differences were inconsistent across harvest-times and during shelf life. Thus, organically and conventionally grown product had almost identical qualities. Sensory comparison confirmed that there was no flavour difference. This case study provides data that challenge a general perception that organic bananas have better flavour than conventional bananas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous investigations with 1-methylcyclopropene (1-MCP) on avocado (Persea americana Mill.) fruit have focussed mainly on improving storage life by reducing the severity of disorders causing discolouration of the flesh. Development of 1-MCP and ethylene treatments, which also help control the time to reach the eating ripe stage, may confer additional practical benefits. In this context, the current study investigated the potential of 1-MCP to accurately manipulate ripening of non-stored 'Hass' avocado fruit by treatment before or after ethylene and at different times during ripening. To investigate this, 500 nL L-1 1-MCP was applied within 1 day after harvest, followed by ethylene 0-14 days after 1-MCP. In addition, fruit were treated with ethylene, then 1-MCP 0-8 days after ethylene. Treatment of fruit with 500 nL L-1 1-MCP for 18 h at 20 degreesC provided the maximum effect by increasing the days from harvest to ripe (DTR) from 8 (with no 1-MCP) to 20. Fruit treated with 500 nL L-1 1-MCP for 18 h at 20 degreesC remained insensitive to 100 muL L-1 ethylene applied between 0 and 14 days after 1-MCP for 24 h at 20 degreesC. Ripening of fruit exposed to 100 muL L-1 ethylene for 24 h at 20 degreesC could be delayed by up to 3.3 days by applying 500 nL L-1 1-MCP for 18 h at 20 degreesC up to 2 days after ethylene treatment. However, once the fruit started to soften (sprung) there was little effect of 1-MCP on DTR, compared with no 1-MCP. 1-MCP treatment was associated with increased severity of body rots (caused mainly by Colletotrichum spp.) and stem-end rots (caused mainly by Dothiorella spp.), which was likely due to the increased DTR in these treatments. Significant differences in disease severity were found between orchards (replications), with replicates with low disease severity being less affected by 1-MCP treatment. These results indicate that 1-MCP can delay ripening, but careful sourcing of fruit is required to reduce the risk of diseases in ripe fruit. There is some capacity to delay ripening using 1-MCP after ethylene. There is little potential to control ripening using ethylene after treatment with 500 nL L-1 1-1-MCP, but lower concentrations may be more effective. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of modified atmosphere (MA) conditions on the quality of minimally processed pineapple slices were determined. Commercial pineapple slice packs sealed with 40 pm thick polyester film were kept at 4.5 degrees C for 14 d. The oxygen transmission rate of the film was 23 ml m(-2) day(-1) atm(-1) (at 25 degrees C, 75% RH). In-built atmospheres and the quality of the products were determined. O-2 concentrations within the packs stabilised at 2%, while CO2 concentrations increased to 70% by day 14. The high CO2 level suggested an inappropriate lidding film permeability for the product, and hence affected its quality. Three batches of pineapple slices were packed in the laboratory using lidding films with oxygen transmission rate of 75, 2790 or 5000 ml m(-2) day(-1) atm(-1) (at 23 degrees C, 0% RH). Headspace atmospheres from laboratory-packed pineapple slices suggested an optimum equilibrium modified atmosphere of ca. 2% O-2 and 15% CO2. Respiration data from the laboratory-prepared packs were pooled together and used to develop a correlation model relating respiration rates to O-2 and CO2 concentrations. The model showed a decrease in respiration rate with decreasing O-2 and increasing CO2 concentrations. Respiration rate stabilised at 2% 02 and 10% CO2. The high concentrations of CO2 observed in the commercial packs did not fit the range in the respiration model. The model could aid in selection of MA conditions for minimally processed pineapple fruit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a first step toward understanding the molecular basis of pineapple fruit development, a sequencing project was initiated to survey a range of expressed sequences from green unripe and yellow ripe fruit tissue. A highly abundant metallothionein transcript was identified during library construction, and was estimated to account for up to 50% of all EST library clones. Library clones with metallothionein subtracted were sequenced, and 408 unripe green and 1140 ripe yellow edited EST clone sequences were retrieved. Clone redundancy was high, with the combined 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of the EST clone sequences clustered within 13.5% and 9.3% of contigs from green unripe and yellow ripe libraries, respectively, indicating that a small subset of genes dominate the majority of the transcriptome. Furthermore, sequence cluster analysis, northern analysis, and functional classification revealed major differences between genes expressed in the unripe green and ripe yellow fruit tissues. Abundant genes identified from the green fruit include a fruit bromelain and a bromelain inhibitor. Abundant genes identified in the yellow fruit library include a MADS box gene, and several genes normally associated with protein synthesis, including homologues of ribosomal L10 and the translation factors SUI1 and eIF5A. Both the green unripe and yellow ripe libraries contained high proportions of clones associated with oxidative stress responses and the detoxification of free radicals.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycosphaerello musicolo causes Sigatoka disease of banana and is endemic to Australia. The population genetic structure of M. musicola in Australia was examined by applying single-copy restriction fragment length polymorphism probes to hierarchically sampled populations collected along the Australian cast coast. The 363 isolates studied were from 16 plantations at 12 sites in four different regions, and comprised 11 populations. These populations displayed moderate levels of gene diversity (H = 0.142 to 0.369) and similar levels of genotypic richness and evenness. Populations were dominated by unique genotypes, but isolates sharing the same genotype (putative clones) were detected. Genotype distribution was highly localized within each population, and the majority of putative clones were detected for isolates sampled from different sporodochia in the same lesion or different lesions on a plant. Multilocus gametic disequilibrium tests provided further evidence of a degree of clonality within the populations at the plant scale. A complex pattern of population differentiation was detected for M. musicola in Australia. Populations sampled from plantations outside the two major production areas were genetically very different to all other populations. Differentiation was much lower between populations of the two major production areas, despite their geographic separation of over 1,000 km. These results suggest low gene flow at the continental scale due to limited spore dispersal and the movement of infected plant material.